• 제목/요약/키워드: Cetane number

검색결과 72건 처리시간 0.029초

LPG-DME 성층혼합 압축착화 엔진 (LPG-DME Stratified Charge Compression Ignition Engine)

  • 배충식;염기태
    • 대한기계학회논문집B
    • /
    • 제31권8호
    • /
    • pp.672-679
    • /
    • 2007
  • The combustion characteristics of a liquefied petroleum gas-di-methyl ether (LPG-DME) compression ignition engine was investigated under homogeneous charge and stratified charge conditions. LPG was used as the main fuel and injected into the combustion chamber directly. DME was used as an ignition promoter and injected into the intake port. Different LPG injection timings were tested to verify the combustion characteristics of the LPG-DME compression ignition engine. The combustion was divided into three region which are homogeneous charge, stratified charge, and diffusion flame region according to the injection timing of LPG. The hydrocarbon emission of stratified charge combustion was lower than that of homogeneous charge combustion. However, the carbon monoxide and nitrogen oxide emission of stratified charge combustion were slightly higher than those of the homogeneous charge region. The indicated mean effective pressure was reduced at stratified charge region, while it was almost same level as the homogeneous charge combustion region at diffusion combustion region. The start of combustion timing of the stratified charge combustion and diffusion combustion region were advanced compared to the homogeneous charge combustion. It attributed to the higher cetane number and mixture temperature distribution which locally stratified. However, the knock intensity was varied as the homogeneity of charge was increased.

LPG-DME 압축착화 엔진의 성층화 영향 (Fuel Stratification Effects of LPG-DME Compression Ignition Engine)

  • 염기태;배충식
    • 한국자동차공학회논문집
    • /
    • 제16권1호
    • /
    • pp.78-85
    • /
    • 2008
  • The exhaust emission characteristics of a liquefied petroleum gas-di-methyl ether (LPG-DME) compression ignition engine was investigated under homogeneous charge, stratified charge and diffusion combustion conditions. LPG was used as the main fuel and injected into the combustion chamber directly. DME was used as an ignition promoter and injected into the intake port. Different LPG injection timings were tested to verify the combustion characteristics of the LPG-DME compression ignition engine. The combustion was divided into three region which are homogeneous charge, stratified charge, and diffusion combustion region according to the injection timing of LPG. The HC emission was reduced with LPG stratification. However, the carbon monoxide and particulate matter emissions were increased. The ignition timing was advanced with LPG stratification. This advance combustion was because of charge temperature and cetane number stratification with LPG.

바이오 에탄올 혼합유에 대한 디젤기관의 연소특성 (Combustion characteristics of diesel engine with bio-ethanol blend fuel)

  • 정석호
    • 수산해양기술연구
    • /
    • 제45권2호
    • /
    • pp.114-121
    • /
    • 2009
  • There are increased in using the bio-ethanol, as the carbon neutral attracts many researchers due to a reduction in carbon dioxide spotted as the global warming gas. A gasoline engine with 100% of the bioethanol was developed and used in Brazil already, but researches of using the bio-ethanol in diesel engines are lack. In this study, combustion tests with blend fuel of the gas oil and bio ethanol by 50% maximally due to a low cetane number of bio-ethanol were accomplished as a basic study of introduction of using the bioethanol in diesel engines. The result was that smoke emission was decreased with increase in proportion of the bio-ethanol, due to the increase of a amount of pre-mixed combustion with ignition delay. Although the amount of $CO_2$ is reduced according as the bio-ethanol is used(carbon neutral), the emission of $CO_2$ with increase in the proportion of the bio-ethanol was more increased due to lower a heat value of bio-ethanol than gas oil.

데이터 추출 과정을 적용한 Block-wise Adaptive Predictive PLS (Block-wise Adaptive Predictive PLS using Block-wise Data Extraction)

  • 김성영;정창복;최수형;이범석
    • 제어로봇시스템학회논문지
    • /
    • 제12권7호
    • /
    • pp.706-712
    • /
    • 2006
  • Recursive Partial Least Squares(RPLS) method has been used for processing the on-line available multivariate chemical process data and modeling adaptive prediction model for process changes. However, RPLS method is unstable in PLS model updating because RPLS method updates PLS model by merging past PLS model and new data. In this study, Adaptive Predictive Partial Least Squres(APPLS) method is suggested for more sensitive adaptation to process changes. By expanding APPLS method, block-wise Adaptive Predictive Partial Least Squares(block-wise APPLS) method is suggested for a lager scale data of chemical processes. APPLS method has been applied to predict the reactor properties and the product quality of a direct esterification reactor for polyethylene terephthalate(PTT), and block-wise APPLS method has been applied to predict the cetane number using NIR Diesel Spectra data. APPLS and block-wise APPLS methods show better prediction and updating performance than RPLS method.

Dimethyl-ether (DME) 연료의 분무, 연소 및 배기 특성에 관한 실험 및 수치해석적 연구 (A Study on the Spray, Combustion, and Exhaust Emission Characteristics of Dimethyl-ether (DME) by Experiment and Numerical Analysis)

  • 박수한;김형준;이창식
    • 한국분무공학회지
    • /
    • 제15권1호
    • /
    • pp.31-37
    • /
    • 2010
  • The aim of this work is to investigate the spray and combustion characteristics of dimethyl-ether (DME) at various injection conditions. The spray characteristics such as spray tip penetration and spray cone angle were experimentally studied from the spray images which obtained from the spray visualization system. Combustion and emissions characteristics were numerically investigated by using KIVA-3V code coupled with Chemkin chemistry solver. From these results, it revealed that DME spray had a shorter spray tip penetration and wider spray cone angle than that of diesel spray due to the low density, low surface tension, and fast evaporation characteristics. At the constant heating value condition, DME fuel showed higher peak combustion pressure and earlier ignition timing, because of high cetane number and superior evaporation characteristics. In addition, the combustion of DME exhausted more $NO_x$ emission and lower HC emission due to the active combustion reaction in the combustion chamber. The result shows that DME had a little soot emission due to its molecular structure characteristics with no direct connection between carbons.

커먼레일을 장착한 대형 디젤엔진에서 디젤과 JP-8의 분무 및 연소특성 평가 (Spray and Combustion Characteristics of Diesel and JP-8 in a Heavy-Duty Diesel Engine Equipped with Common-Rail Fuel Injection System)

  • 전진욱;이진우;박정서;배충식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3019-3025
    • /
    • 2008
  • An experimental study was performed to assess the effect of diesel and JP-8 aviation fuel on the spray characteristics, performance and emissions in a single cylinder optical diesel engine. Both fuels were injected via an 8-hole solenoid-driven injector in a common-rail injection system. For better understanding of spray development, the macroscopic images were captured with high speed camera, offered evidences for the results of performance and emissions. From macroscopic spray images, the spray tip penetration of JP-8 shorter than that of diesel while spray angle of JP-8 was wider than that of diesel. It indicates that the vaporization of JP-8 is superior to that of diesel. The lower cetane number of JP-8 resulted in increased portion of premixed combustion. The IMEP with JP-8 is lower than that of diesel-fueled engine. Especially, using JP-8 has a potential for reducing soot.

  • PDF

디젤-열분해유 유상액을 사용하는 직접분사식 디젤 엔진의 엔진성능 및 배기특성에 관한 연구 (Performance and Emission Studies in a DI Diesel Engine Fuelled with Diesel-Pyrolysis Oil Emulsion)

  • 이석환;김호승;김태영;우세종;강건용
    • 한국분무공학회지
    • /
    • 제19권2호
    • /
    • pp.55-63
    • /
    • 2014
  • Pyrolysis oil (PO), also known as Bio crude oil (BCO), has the potential to displace significant amounts of fuels that are currently derived from petroleum sources. PO has been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of PO in a diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the PO. One of the easiest way to adopt PO to diesel engine without modifications is emulsification of PO with the fuels that has higher cetane number. However, PO that has high amount of polar chemicals is immiscible with non polar hydrocarbons of diesel. Thus, to stabilize a homogeneous phase of diesel-PO blends, a proper surfactant should be used. In this study, a DI diesel engine operated with diesel and diesel-PO emulsions was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine fuelled by diesel-PO emulsions were examined. Results showed that stable engine operation was possible with the emulsions and engine output power was comparable to diesel operation.

디젤유/바이오디젤유-열분해유-부탄올 혼합유의 디젤 엔진 적용 가능성에 관한 연구 (A Feasibility Study of Using Diesel/Biodiesel-Pyrolysis Oil-Butanol Blends in a Diesel Engine)

  • 김호승;장영운;이석환;김태영;강건용;윤준규
    • 한국자동차공학회논문집
    • /
    • 제22권5호
    • /
    • pp.116-125
    • /
    • 2014
  • Pyrolysis oil (PO), derived from biomass through fast pyrolysis process have the potential to displace significant amounts of petroleum fuels. The PO derived from wood has been regarded as an alternative fuel to be used in diesel engines. However, the use of PO in a diesel engine is very limited due to its poor properties like low energy density, low cetane number, high acidity and high viscosity of PO. Therefore, one of the easiest way to adopt PO to diesel engine without modifications is blended with other fuels that have high centane number. However, PO that has high amount of polar chemicals is immiscible with non polar hydrocarbons of diesel or biodiesel. Thus, to stabilize a homogeneous phase of diesel/biodiesel-PO blends, a proper surfactant should be used. Nevertheless, PO which was produced from different biomass type have varied characteristics and this complicates the selection of a suitable additive for a specific PO-diesel emulsion. In this regard, a more simple approach such as the use of a co-solvent like ethanol or butanol to induce a more stable phase of the PO-diesel mixture could be a promising alternative. In this study, a diesel engine operated with diesel/biodiesel-PO-butanol blends was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine were examined under the engine loads of IMEP 0.2 ~ 0.8MPa.

경유 대체연료로서 수첨 바이오디젤의 연료적 특성 연구 (A Study on the Fuel Characteristics of Hydrotreated Biodiesel(HBD) for Alternative Diesel Fuel)

  • 김재곤;전철환;임의순;정충섭
    • 한국응용과학기술학회지
    • /
    • 제28권4호
    • /
    • pp.508-516
    • /
    • 2011
  • Hydrotreated biodiesel(HBD) is paraffinic bio-based liquid, with the chemical structure $C_nH_{2n+2}$, originating from vegetable oil(the process can also be applied to animal fat). The oil or fat is treated in a number of process, the most important being hydrogenation, in order to create a bio-based liquid diesel fuel. During the hydrogenation, oxygen is removed from the triglyceride and converted into water. Propane is formed as a by product and can be combusted and used for energy production. HBD can be used in conventional diesel engines, pure or blended with conventional diesel, due to its similar physical properties to diesel. This study reports the quality characteristics with chemical and physical properties as an alternative diesel fuel. Especially, HBD showed higher cetane value and number than FAME, and it is consisted of $C_{15}$ - $C_{18}$ n-paraffinic compounds. We also describes quality characteristics of HBD blends(2, 5, 10, 20, 30, 40, 50 vol%) in automotive diesel. HBD blends(max. 20 vol%) were the limit by the Korean specification due to poor low temperature characteristics.

Fungal Production of Single Cell Oil Using Untreated Copra Cake and Evaluation of Its Fuel Properties for Biodiesel

  • Khot, Mahesh;Gupta, Rohini;Barve, Kadambari;Zinjarde, Smita;Govindwar, Sanjay;RaviKumar, Ameeta
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권4호
    • /
    • pp.459-463
    • /
    • 2015
  • This study evaluated the microbial conversion of coconut oil waste, a major agro-residue in tropical countries, into single cell oil (SCO) feedstock for biodiesel production. Copra cake was used as a low-cost renewable substrate without any prior chemical or enzymatic pretreatment for submerged growth of an oleaginous tropical mangrove fungus, Aspergillus terreus IBB M1. The SCO extracted from fermented biomass was converted into fatty acid methyl esters (FAMEs) by transesterification and evaluated on the basis of fatty acid profiles and key fuel properties for biodiesel. The fungus produced a biomass (8.2 g/l) yielding 257 mg/g copra cake SCO with ~98% FAMEs. The FAMEs were mainly composed of saturated methyl esters (61.2%) of medium-chain fatty acids (C12-C18) with methyl oleate (C18:1; 16.57%) and methyl linoleate (C18:2; 19.97%) making up the unsaturated content. A higher content of both saturated FAMEs and methyl oleate along with the absence of polyunsaturated FAMEs with ≥4 double bonds is expected to impart good fuel quality. This was evident from the predicted and experimentally determined key fuel properties of FAMEs (density, kinematic viscosity, iodine value, acid number, cetane number), which were in accordance with the international (ASTM D6751, EN 14214) and national (IS 15607) biodiesel standards, suggesting their suitability as a biodiesel fuel. The low cost, renewable nature, and easy availability of copra cake, its conversion into SCO without any thermochemical pretreatment, and pelleted fungal growth facilitating easier downstream processing by simple filtration make this process cost effective and environmentally favorable.