• Title/Summary/Keyword: Cesium concentration

Search Result 62, Processing Time 0.214 seconds

Studies on the Conditions of Glucose Oxidase Production by Aspergillus niger KUF-04 (Aspergillus niger KUF-04에 의한 Glucose Oxidase 생산조건에 관한 연구)

  • 최남희;양호석;최용진;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.10 no.2
    • /
    • pp.145-154
    • /
    • 1982
  • To maximize the production of glucose oxidase by Aspergillus niger KUF-04 isolated from a soil, the cultivation conditions and nutrient sources for the enzyme production were studied. The results obtained were as fellows: 1. The optimum temperature, pH of the medium, and cultivation time for the enzyme formation were found to be 28-34$^{\circ}C$, 7.0-8.0 and 40 hours, respectively. 2. The best carbon source was proved to be glucose and its most effective concentration was 15 percent. 3. Ammonium sulfate was the best nitrogen source as compared with the other inorganic and organic nitrogen sources tested. Its optimum concentration for the glucose oxidase production was 0.02 percent. 4. As mineral sources, 0.05% of Mag cesium sulfate 7-hydrate and 0.02% of Potassium phosphate, monobasic seemed to be necessary to further increase the level of the enzyme production.

  • PDF

Radiation Dose Assessment Model for Terrestrial Flora and Fauna and Its Application to the Environment near Fukushima Accident

  • Keum, Dong-Kwon;Jeong, Hyojoon;Jun, In;Lim, Kwang-Muk;Choi, Yong-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.1
    • /
    • pp.16-25
    • /
    • 2020
  • Background: To investigate radiological effects on biota, it is necessary to assess radiation dose for flora and fauna living in a terrestrial ecosystem. This paper presents a dynamic model to assess radioactivity concentration and radiation dose of terrestrial flora and fauna after a nuclear accident. Materials and Methods: Litter, organic soil, mineral soil, trees, wild crops, herbivores, omnivores, and carnivores are considered the major components of a terrestrial ecosystem. The model considers the physicochemical and biological processes of interception, weathering, decomposition of litter, percolation, root uptake, leaching, radioactive decay, and biological loss of animals. The predictive capability of the model was investigated by comparison of its predictions with field data for biota measured in the Fukushima forest area after the Fukushima nuclear accident. Results and Discussion: The predicted radioactive cesium inventories for trees agreed well with those for evergreens and deciduous trees sampled in the Fukushima area. The predicted temporal radioactivity concentrations for animals were within the range of the measured radioactivity concentrations of deer, wild boars, and black bears. The radiation dose for the animals were, for the whole simulation time, estimated to be much smaller than the lower limit (0.1 mGy·d-1) of the derived consideration reference level given by the International Commission on Radiological Protection for terrestrial flora and fauna. This suggested that the radiation effect of the accident on the biota in the Fukushima forest would be insignificant. Conclusion: The present dynamic model can be used effectively to investigate the radiological risk to terrestrial ecosystems following a nuclear accident.

Study of Composite Adsorbent Synthesis and Characterization for the Removal of Cs in the High-salt and High-radioactive Wastewater (고염/고방사성 폐액 내 Cs 제거를 위한 복합 흡착제 합성 및 특성 연구)

  • Kim, Jimin;Lee, Keun-Young;Kim, Kwang-Wook;Lee, Eil-Hee;Chung, Dong-Yong;Moon, Jei-Kwon;Hyun, Jae-Hyuk
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.1
    • /
    • pp.1-14
    • /
    • 2017
  • For the removal of cesium (Cs) from high radioactive/high salt-laden liquid waste, this study synthesized a highly efficient composite adsorbent (potassium cobalt ferrocyanide (PCFC)-loaded chabazite (CHA)) and evaluated its applicability. The composite adsorbent used CHA, which could accommodate Cs as well as other molecules, as a supporting material and was synthesized by immobilizing the PCFC in the pores of CHA through stepwise impregnation/precipitation with $CoCl_2$ and $K_4Fe(CN)_6$ solutions. When CHA, with average particle size of more than $10{\mu}m$, is used in synthesizing the composite adsorbent, the PCFC particles were immobilized in a stable form. Also, the physical stability of the composite adsorbent was improved by optimizing the washing methodology to increase the purity of the composite adsorbent during the synthesis. The composite adsorbent obtained from the optimal synthesis showed a high adsorption rate of Cs in both fresh water (salt-free condition) and seawater (high-salt condition), and had a relatively high value of distribution coefficient (larger than $10^4mL{\cdot}g^{-1}$) regardless of the salt concentration. Therefore, the composite adsorbent synthesized in this study is an optimized material considering both the high selectivity of PCFC on Cs and the physical stability of CHA. It is proved that this composite adsorbent can remove rapidly Cs contained in high radioactive/high salt-laden liquid waste with high efficiency.

The Uptake of $Cs^{137}$ Paddy Rice from Soil and its Distribution in the Plant (답토양(畓土壤)에서 수도(水稻)의 Cesium-137 흡수(吸收)와 수도체내(水稻體內) 분포(分布))

  • Kim, Jae-Sung;Lim, Soo-Kil
    • Korean Journal of Environmental Agriculture
    • /
    • v.4 no.1
    • /
    • pp.18-24
    • /
    • 1985
  • A pot experiment was conducted to study the influence of potassium and cesium carrier on the uptake of radionuclide $Cs^{137}$ which is an element released usually from nuclear facilities, by paddy rice upon prolonged cropping of contaminated soils. The results are summarized as follows: 1) Visual toxic symptoms on the growth of rice plant due to treatment of radioactive cesium were not observed up to $20 {\mu}Ci/10Kg$ soil in a pot. 2) The yield and potassium content in rice plant were increased with potassium application, while the reverse was true for the calcium and magnesium. The addition of potassium to the soil markedly reduced $Cs^{137}$ uptake by rice plant but the addition of Cs carrier increased $Cs^{137}$ uptake. 3) Potassium and $Cs^{137}$ showed uniform distribution in all parts of plant and the contents of these two elements were high in the stems and leaves, and low in the heads. The ratio of $Cs^{137}$ to K was, however, not uniform in all parts of a plant. It was shown that this ratio was higher in the seed part, that is, chaff and hulled grain than in the leaves and stems. 4) $Cs^{137}$ absorption rate in rice plant was remarkably reduced with increase of potassium application and it was ranged from $0.02{\sim}0.47%$ in potassium non-treated plot to 0.01∼0.04% in plot treated with a concentration of 16Kg/10a. 5) The amount of $Cs^{137}$ and potassium uptake of rice plant depended on soil type. Uptake of $Cs^{137}$ by rice plant was higher in the soil with low pH and potassium content. The $Cs^{137}$ uptake by rice plant decreased as the potassium content and pH of soil was increased, but $Cs^{137}$ uptake increased when CEC and clay content in soil was high.

  • PDF

Influence of Ionic Strength, pH, and Complex-forming Anions on the Adsorption of Cesium-137 and Strontium-90 by Kaolinite (카올리나이트에 의한 세슘-137 및 스트론튬-90 흡착에 대한 이온강도, pH, 복합체-형성 음이온의 영향)

  • Jeong, Chan Ho;Cho, Young Hwan;Hahn, Pil Soo
    • Economic and Environmental Geology
    • /
    • v.31 no.1
    • /
    • pp.11-20
    • /
    • 1998
  • The effects of the major cations ($Ca^{2+}$, $Mg^{2+}$, $K^+$, $Na^+$), complex-forming anions ($SO_4{^{2-}}$, $HCO_3{^-}$), and solution pH on the adsorption of $^{137}Cs$ and $^{90}Sr$ by kaolinite in groundwater chemistry were investigated. Three-dimensional Kd modelling designed by a statistical method was attempted to compare the relative effect among hydrated radii, charge and concentration of competing cations on the adsorption of Cs and Sr. The modelling results indicate that the hydrated radii of competing cations is the most important factor, and then their charges and concentrations are also important factors in order. The property of zeta potential of kaolinite particles was discussed in terms of the amphoteric reactions of a kaolinite surface affecting the adsorption of Cs and Sr. The ionic strength of competing cations on the adsorption of Cs and Sr exerts a greater effect than the solution pH. The sorption behaviour of Sr on kaolinite is also highly dependent on the concentration of bicarbonate. The speciation of Sr and the saturation state of a secondary phase were thermodynamically calculated by a computer program, WATEQ4F. This indicates that the change in solution pH with the concentration of bicarbonate and the precipitation of a strontianite ($SrCO_3$) are major factors controlling Sr adsorption behaviour in the presence of bicarbonate ion.

  • PDF

Monitoring of Artificial Radionuclides in Edible Mushrooms in Korea (식용 버섯류에서의 인공 방사능 농도 조사)

  • Cho, Han-Gil;Kim, Ji-eun;Lee, Sung-nam;Moon, Su-kyong;Park, Yong-Bae;Yoon, Mi-Hye
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.6
    • /
    • pp.488-494
    • /
    • 2018
  • To ensure food-safety of mushrooms from radioactive contamination, edible mushroom samples distributed in Gyeonggi province in Korea were collected according to species and country of origin. A total of 284 mushrooms, belonging to 10 species (Lentinula edodes, Pleurotus ostreatus, Pleurotus eryngii, Agaricus bisporus, Flammulina velutipes, Phellinus linteus, Inonotus Obliquus (Chaga), Auricularia auricula-judae, Ganoderma lucidum and Tricholoma matsutake) were subjected to radioactivity testing. The concentration of artificial radionuclides, 131I, 134Cs, and 137Cs, was analyzed using gamma-ray spectrometry. 131I and 134Cs were not detected more than MDA value from all samples. Among 204 domestic mushrooms, however, 137Cs were detected in 0.21~2.58 Bq/kg from six cases (3 Lentinula edodes, 1 Ganoderma lucidum and 2 Tricholoma matsutake), whereas 137Cs were detected in 0.21~53.79 Bq/kg from 38 cases (22 Inonotus Obliquus(Chaga), 14 Phellinus linteus, 1 Lentinula edodes and 1 Tricholoma matsutake) among 80 imported mushrooms. In addition, average concentration of 137Cs in 10 Chaga mushroom-processed products was more than twice as much as dried Chaga mushroom, and maximum concentration was 123.79 Bq/kg. Results suggest that radioactivity monitoring system for imported mushrooms and mushroom-processed products should be continuously intensified to secure food-safety in Korea.

Effect of the Slag Former on the Metal Melting and Radionuclides Distribution in an Electric Arc Furnace

  • Song Song-Pyung;Min Byung-Youn;Choi Wang-Kyu;Chung Chong-Hun;Oh Won-zin
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.32-37
    • /
    • 2005
  • The characteristics of the metal melting and radionuclide distribution of the radioactive has been investigated in a lab-scale arc furnace. The slag former based on the constituents of silica, calcium oxide, aluminum oxide, borate and calcium fluoride additions was used for melting of the stainless and carbon steel. In the melting of the stainless steel, the amount of slag formation increased with an increase of the concentration of the slag former. But the effects of the slag basicity on the amount of stag formation showed a local maximum value of the slag formation with an increase of the basicity index in the melting of the stainless steel as well as in the melting of the carbon steel. With an increase of the amount of slag former addition, the trends of the cobalt distribution into the ingot and the stag depended on the kind of slag former used in the melting of the stainless steel while the effect of the slag basicity on the distribution of the cobalt was not clarified in the melting of carbon steel. Tn the melting of the carbon steel, the strontium was captured at up to $50\%$ into the slag phase. Cesium was completely eliminated from the melt of the stainless steel as well as the carbon steel and distributed to the dust phase.

  • PDF

Selective adsorption of Cs+ by MXene (Ti3C2Tx) from model low-level radioactive wastewater

  • Jun, Byung-Moon;Jang, Min;Park, Chang Min;Han, Jonghun;Yoon, Yeomin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1201-1207
    • /
    • 2020
  • This study explored whether MXene (Ti3C2Tx) could remove radioactive Cs+ from model nuclear wastewater. Various adsorption tests were performed and the physical aspects of the interaction were investigated. We varied the MXene dosage, Cs+ initial concentration, solution pH, solution temperature and exposure time. MXene adsorption exhibited very fast kinetics, based on the fact that equilibrium was achieved within 1 h. MXene exhibited an outstanding adsorption capacity (148 mg g-1) at adsorbent and adsorbate concentrations of 5 and 2 mg L-1, respectively, at neutral pH condition (i.e., pH 7). We explored Cs+ adsorption by MXene in the presence of four different ions (NaCl, KCl, CaCl2 and MgCl2) and three different organic acids (sodium oleate, oxalic acid, and citric acid). The Cs+ removal rate changed in the presence of these components; adsorption of Cs+ by MXene thus involved ion exchange, supported by both Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. We confirmed that MXene was re-usable for at least four cycles. MXene is cost-effective and practical when used to adsorb radionuclides (e.g., Cs+) in nuclear wastewater.

[$Cl^-$-sensitive Component of $Ca^{2+}$-activated Tail Current in Rabbit Atrial Myocytes

  • Park, Choon-Ok;So, In-Suk;Ho, Won-Kyung;Kim, Woo-Gyeum;Earm, Yung-E
    • The Korean Journal of Physiology
    • /
    • v.26 no.1
    • /
    • pp.27-35
    • /
    • 1992
  • We used the whole cell patch clamp technique to examine the ionic basis for the tail current after depolarizing pulse in single atrial myocytes of the rabbit. We recorded the tail currents during various repolarizations after short depolarizing pulse from a holding potential of -70 mV. The potassium currents were blocked by external 4-aminopyridine and replacement of internal potassium with cesium. The current was reversed to the outward direction above +10 mV. High concentrations of intracellular calcium buffer inhibited the activation of the current. Diltiazem and ryanodine blocked it too. These data suggest that the current is activated by intracellular calcium released from sarcoplasmic reticulumn. When the internal chloride concentration was increased, the inward tail current was increased. The current was partially blocked by the anion transport blocker niflumic acid. The current voltage curve of the niflumic acid sensitive current component shows outward rectification and is well fitted to the current voltage curve of the theoretically predicted chloride current calculated from the constant field equation. The currents recorded in rabbit atrial myocytes, with the method showing isolated outward Na Ca exchange current in ventricular cells of the guinea pig, suggested that chloride conductance could be activated with the activation of Na/ca exchange current. From the above results it is concluded that a chloride sensitive component which is activated by intracellular calcium contributes to tail currents in rabbit atrial cells.

  • PDF

Characteristics of two extended-cavity diode lasers phase-locked with a 9.2 CHz frequency offset (9.2 GHz 주파수 차이로 위상잠금된 두 외부 공진기 다이오드 레이저의 제작 및 특성 조사)

  • Kwon, Taek-Yong;Shin, Eun-Ju;Yoo, Dae-Hyuk;Lee, Ho-Sung;In, Min-Kyo;Cho, Hyuk;Park, Sang-Eon
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.543-547
    • /
    • 2002
  • We have constructed two extended-cavity diode lasers which are phase-locked with a 9.2 GHz frequency offset. We adopted a digital servo circuit for the phase-locking. The relative linewidth of the phase-locked lasers was less than 2 Hz. Using the measured beat spectrum, we found the carrier concentration to be about 93 %. We measured phase noise and relative frequency stability of the lasers. The Allan deviation at the gate time of 20 s was $2.7{\times}10^{-19}$.