• Title/Summary/Keyword: Cerebrovasculature

Search Result 2, Processing Time 0.014 seconds

Analysis and 3D Reconstruction of a Cerebral Vascular Network Using Image Threshold Techniques in High-resolution Images of the Mouse Brain (쥐 뇌의 고해상도 이미지에서 임계화 기법을 활용한 뇌혈관 네트워크 분석 및 3D 재현)

  • Lee, Junseok
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.9
    • /
    • pp.992-999
    • /
    • 2019
  • In this paper, I lay the foundation for creating a multiscale atlas that characterizes cerebrovasculature structural changes across the entire brain of a mouse in the Knife-Edge Scanning Microscopy dataset. The geometric reconstruction of the vascular filaments embedded in the volume imaging dataset provides the ability to distinguish cerebral vessels by diameter and other morphological properties across the whole mouse brain. This paper presents a means for studying local variations in the small vascular morphology that have a significant impact on the peripheral nervous system in other cerebral areas, as well as the robust and vulnerable side of the cerebrovasculature system across the large blood vessels. I expect that this foundation will prove invaluable towards data-driven, quantitative investigations into the system-level architectural layout of the cerebrovasculature and surrounding cerebral microstructures.

A Study on the Reconstruction and Quantitative Measurement Method of Cerebrovascular Structure in Cross-sectioned Images of the Whole Mouse Brain (쥐 전체 뇌의 단면 이미지에서 뇌혈관의 구조 재현 및 정량적 측정 기법에 관한 연구)

  • Lee, Junseok
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.9
    • /
    • pp.1020-1028
    • /
    • 2019
  • Cerebrovascular disease is a common disease in the elderly population. However, we do not have enough understanding of brain-related diseases. Recent advances in microscopy technology have resulted in the acquisition of vast amounts of image data sets for small organs, and it has become possible to handle vast amounts of image data sets due to improved computer performance and software technology. In this paper, the author proposes introduce a method for classifying and analysing only cerebrovascular information in the mouse brain image, as well as a quantitative measure of the portion of the cerebrovascular in the mouse brain. The study of the cerebrovascular structure is significant, and it can be helpful to improve the understanding of cerebrovasculature. As a result, the author expects that this study will be useful for neuroscientists conducting clinical research.