• 제목/요약/키워드: Cerebral cells

검색결과 342건 처리시간 0.031초

밤 속껍질로부터 기능성 음료의 개발(III) -뇌혈류역학, 평균혈압, 흉선세포 증식율에 미치는 효과- (The Development of Functional Beverage from the Inner Skin of Chestnut Castanea crenata ( In ) Effects on the Regional Cerebral Blood Flow, Mean Arterial Blood Pressure, Proliferation of Thymocytes -)

  • 정현우;박철훈;전병관
    • 한국식품영양학회지
    • /
    • 제14권5호
    • /
    • pp.397-404
    • /
    • 2001
  • The purpose of this study was to investigate effects of inner skin of chestnut on the activation of a living body's function (regional cerebral blood flow and mean arterial blood pressure in Sprague-Dawley rats, proliferation of thymocytes in normal mice and L1210 cells transplanted mice) . We used inner skin of chestnut extract(Sample A : inner skin of chestnut-panbroiled after driedextract (100$\^{C}$ ), Sample B , inner skin of chestnut-panbroiled-extract(100$\^{C}$ ) , Sample C : inner skin of chestnut -panbroiled after dried-extract(80$\^{C}$ ), Sample D : inner skin of chestnut-panbroiled-extract(80$\^{C}$)} Regional cerebral blood flow(rCBF) and Mean arterial blood pressure(MABP) were tested using Leser -Doppler Flowmetry(LDF), and the proliferation of thymcytes was tested using a colorimetric tetrazoliun assay ( MTT assay) The experimental results as follows 1. rCBF was significantly increased by Sample C in a dose-dependent manner. 2. MABP was not changed by Sample C in a 0.1mg/kg∼10.0mg/kg treated group. 3. Proliferation of thymocytes was not changed by Sample C in normal mice. 4. Proliferation of thymocytes was significantly accelerated by Sample C in L1210 cells transplanted mice.

  • PDF

사물탕(四物湯)이 Glutamate에 의한 해마세포의 손상에 미치는 영향 (Effects of Samultang on Glutamate-Induced Apoptosis of Hippocampus Cells)

  • 정대영;최철원;문병순
    • 대한한의학회지
    • /
    • 제30권1호
    • /
    • pp.64-75
    • /
    • 2009
  • Objective: This study was designed to investigate the effect of Samultang (SMT) under hippocampus cells ischemia both in vitro and in vivo. Methods: In the in vitro study, HT22 cells, predominantly detected in the cytoplasm, which coincides with the location of the mitochondria, were used as indicators. In the in vivo study, permanent middle cerebral artery occlusion (MCAO) was induced on rats. SMT was given orally 2 h before induction of permanent focal brain ischemic injury. Result: In the in vitro study, SMT had protective effects in glutamate-induced cytotoxicity, which was revealed as apoptosis characterized by chromatic condensation and the loss of mitochondrial membrane potential in HT22 cells. In the in vivo study, TTC (2,3,5-triphenyltetrazolium chloride) staining showed a marked ischemic injury in blood supply territory of the middle cerebral artery (MCA) such as the cerebral cortex and striatum. However, treatment with SMT significantly reduced infarcted volume. SMT increased marked survival of HT22 cells against glutamate-induced cytotoxicity in MTT assay. Conclusion: These results suggest that water extract of SMT provides neuroprotection against ischemic or oxidative injury by inhibition of apoptotic cell death.

  • PDF

Role of vascular smooth muscle cell in the inflammation of atherosclerosis

  • Lim, Soyeon;Park, Sungha
    • BMB Reports
    • /
    • 제47권1호
    • /
    • pp.1-7
    • /
    • 2014
  • Atherosclerosis is a pathologic process occurring within the artery, in which many cell types, including T cell, macrophages, endothelial cells, and smooth muscle cells, interact, and cause chronic inflammation, in response to various inner- or outer-cellular stimuli. Atherosclerosis is characterized by a complex interaction of inflammation, lipid deposition, vascular smooth muscle cell proliferation, endothelial dysfunction, and extracellular matrix remodeling, which will result in the formation of an intimal plaque. Although the regulation and function of vascular smooth muscle cells are important in the progression of atherosclerosis, the roles of smooth muscle cells in regulating vascular inflammation are rarely focused upon, compared to those of endothelial cells or inflammatory cells. Therefore, in this review, we will discuss here how smooth muscle cells contribute or regulate the inflammatory reaction in the progression of atherosclerosis, especially in the context of the activation of various membrane receptors, and how they may regulate vascular inflammation.

Neurological Effects of Bojungikki-tang and Bojungikki-tang-gamibang on Focal Cerebral Ischemia of the MCAO Rats

  • Choi, In-Seon;Kwon, Jung-Nam;Kim, Young-Kyun
    • 대한한의학회지
    • /
    • 제30권6호
    • /
    • pp.53-68
    • /
    • 2009
  • Objectives: This study demonstrates the neurological effects of Bojungikki-tang and Bojungikki-tang-gamibang on the focal cerebral ischemia of rats with ischemic damage caused by middle cerebral artery occlusion (MCAO). Methods: Rats were treated with Bojungikki-tang and Bojungikki-tang-gamibang extracts for about five days after MCAO, and the size and volume of cerebral infarction and the ratio of cerebral edema were observed. From the immunohistochemical view, significant changes of outbreak of Bax, Bcl-2, c-Fos, HSP72, and iNOS were observed in the brain tissues. Results: Bojungikki-tang repressed only brain edema and iNOS revelation led by focal cerebral ischemia, when considering significance. In contrast, Bojungikki-tang-gamibang demonstrated significant suppression of cerebral infarction, brain edema, Bax, c-Fos, HSP72, and iNOS induced by focal cerebral ischemia. Conclusions: Bojungikki-tang is considered functional treatment for cerebral ischemic damage; it can be effective to relieve secondary brain edema and immune response. Bojungikki-tang-gamibang can have a direct function to alleviate brain infarct and to control the natural death of nerve cells which cerebral ischemic damage brings about.

  • PDF

MCAo 허혈동물모델에서 육미지황탕 효능에 관한 프로테오믹스 연구 (Proteomic Analysis of MCAo Ischemia Model Administered with Yukmijihwangtang)

  • 김영옥;조동욱;강봉주
    • 한국한의학연구원논문집
    • /
    • 제13권1호통권19호
    • /
    • pp.153-160
    • /
    • 2007
  • In the post-genome era, analysis of the cellular transcriptome using microarray or the cellular proteome using a 2-D gel electrophoresis and MALDI-TOF mass spectrometry are most widely used. Stroke is one of the most important causes of death along with cancer and cardiac disease. When pathological change of cells in developed from cerebral ischemia accompanied by stroke administration of neuroprotective drugs before stroke can decreases the degeneration of neuronal cells. The purpose of the present study was to assess the neuroprotective effect and protein expression after administration of P004, middle cerebral artery model of cerebral ischemia in rats. SD rats were subjected to middle cerebral artery occlusion. P004 (1,000 mg/kg) was administered 2 times at 0, 90 minutes after middle cerebral artery occlusion (MCAo). Rats were killed at 48 hours, and infarct area and volume were determined by histology and computerized image analysis. We investigated the protein expression profile on the global ischemia induced by MCAo. This proteomic analysis enable us to identify several proteins differently expressed in infarct brain tissue. The aims of this study were to do investigation comparing the neuroprotection activities of P004 and to understand the mechanism of acted as neuroprotective drug.

  • PDF

Potential Mechanisms of Benzyl Isothiocyanate Suppression of Invasion and Angiogenesis by the U87MG Human Glioma Cell Line

  • Zhu, Yu;Zhang, Ling;Zhang, Guo-Dong;Wang, Hong-Ou;Liu, Ming-Yan;Jiang, Yuan;Qi, Li-Sha;Li, Qi;Yang, Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권19호
    • /
    • pp.8225-8228
    • /
    • 2014
  • Glioma is one of the most common tumors in China and chemotherapy is critical for its treatment. Recent studies showed that benzyl isothiocyanate (BITC) could inhibit the growth of glioma cells, but the mechanisms are not fully understood. This study explored the inhibitory effect of BITC on invasion and angiogenesis of U87MG human glioma cells in vitro and in vivo, as well as potential mechanisms. It was found that BITC could inhibit invasion and angiogenesis of human glioma U87MG cells by inducing cell cycle arrest at phase G2/M. It also was demonstrated that BITC decreased expression of cyclin B1, p21, MMP-2/9, VE-cadherin, CD44, CXCR4 and MTH1, the activity of the telomerase and $PKC{\zeta}$ pathway. Microarray analysis was thus useful to explore the potential target genes related to tumorigenic processes. BITC may play important roles in the inhibition of invasion and angiogenesis of human glioma cells.

Attenuation of Postischemic Genomic Alteration by Mesenchymal Stem Cells: a Microarray Study

  • Choi, Chunggab;Oh, Seung-Hun;Noh, Jeong-Eun;Jeong, Yong-Woo;Kim, Soonhag;Ko, Jung Jae;Kim, Ok-Joon;Song, Jihwan
    • Molecules and Cells
    • /
    • 제39권4호
    • /
    • pp.337-344
    • /
    • 2016
  • Intravenous administration of mesenchymal stem cells (IV-MSC) protects the ischemic rat brain in a stroke model, but the molecular mechanism underlying its therapeutic effect is unclear. We compared genomic profiles using the mRNA microarray technique in a rodent stroke model. Rats were treated with $1{\times}10^6$ IV-MSC or saline (sham group) 2 h after transient middle cerebral artery occlusion (MCAo). mRNA microarray was conducted 72 h after MCAo using brain tissue from normal rats (normal group) and the sham and MSC groups. Predicted pathway analysis was performed in differentially expressed genes (DEGs), and functional tests and immunohistochemistry for inflammation-related proteins were performed. We identified 857 DEGs between the sham and normal groups, with the majority of them (88.7%) upregulated in sham group. Predicted pathway analysis revealed that cerebral ischemia activated 10 signaling pathways mainly related to inflammation and cell cycle. IV-MSC attenuated the numbers of dysregulated genes in cerebral ischemia (118 DEGs between the MSC and normal groups). In addition, a total of 218 transcripts were differentially expressed between the MSC and sham groups, and most of them (175/218 DEGs, 80.2%) were downregulated in the MSC group. IV-MSC reduced the number of Iba-$1^+$ cells in the peri-infarct area, reduced the overall infarct size, and improved functional deficits in MCAo rats. In conclusion, transcriptome analysis revealed that IV-MSC attenuated postischemic genomic alterations in the ischemic brain. Amelioration of dysregulated inflammation- and cell cycle-related gene expression in the host brain is one of the molecular mechanisms of IV-MSC therapy for cerebral ischemia.

Time-dependent Modulation of Cerebral Ischemic Injury by Activated Macrophages/microglia after Lipopolysaccharide Microinjection into Rat Corpus Callosum

  • Lee, Jae-Chul;Kim, Won-Ki
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-1
    • /
    • pp.106-107
    • /
    • 2003
  • tIn brain ischemic insult, inflammatory cells such as macrophages and lymphocytes are chemo-attracted into the brain lesion and release cytokines, resulting in an activation of microglia that are functionally equivalent to peripheral macrophages in the central nervous system. In cerebral ischemic insults, activated inflammatory cells such as microglia and macrophages may be implicated in the pattern and degree of ischemic injury by producing various bioactive mediators. (omitted)

  • PDF

Differential Expression Patterns of Gangliosides in the Ischemic Cerebral Cortex Produced by Middle Cerebral Artery Occlusion

  • Kwak, Dong Hoon;Kim, Sung Min;Lee, Dea Hoon;Kim, Ji Su;Kim, Sun Mi;Lee, Seo Ul;Jung, Kyu Yong;Seo, Byoung Boo;Choo, Young Kug
    • Molecules and Cells
    • /
    • 제20권3호
    • /
    • pp.354-360
    • /
    • 2005
  • Neuronal damage subsequent to transient cerebral ischemia is a multifactorial process involving several overlapping mechanisms. Gangliosides, sialic acid-conjugated glycosphingolipids, reduce the severity of acute brain damage in vitro. However their in vivo effects on the cerebral cortex damaged by ischemic infarct are unknown. To assess the possible protective role of gangliosides we examined their expression in the cerebral cortex damaged by ischemic infarct in the rat. Ischemia was induced by middle cerebral artery (MCA) occlusion, and the resulting damage was observed by staining with 2, 3, 5-triphenylterazolium chloride (TTC). High-performance thin-layer chromatography (HPTLC) showed that gangliosides GM3 and GM1 increased in the damaged cerebral cortex, and immunofluorescence microscopy also revealed a significant change in expression of GM1. In addition, in situ hybridization demonstrated an increase in the mRNA for ganglioside GM3 synthase. These results suggest that gangliosides GM1 and GM3 may be synthesized in vivo to protect the cerebral cortex from ischemic damage.

아프리카 왕달팽이 (Achatina fulica) 뇌신경절 (Cerebral ganglion)의 미세구조 (A Ultrastructural Study on the Cerebral Ganglion of the African Giant Snail, Achatina fulica)

  • 장남섭
    • Applied Microscopy
    • /
    • 제29권3호
    • /
    • pp.303-313
    • /
    • 1999
  • 아프리카 왕달팽이 (Achatina fulica) 뇌신경절내 5종류의 신경분비세포, light green (LG) cell, dark green (DG) cell, caudo-dorsal (CD) cell, blue green (BG) cell, yellow (Y) cell과 신경망(neuropils) 둥을 전자현미경을 통해 관찰한 결과는 다음과 같다. LG세포는 $60{\mu}m$정도 크기의 원형 또는 난원형의 세포로서 핵과 세포질은 전자밀도가 낮아서 밝게 보였다. 핵질내에는 굵은 과립상의 염색질들이 고르게 발달해 있었고, 둥근 인도 관찰되었다. 세포질에는 평균 $0.4{\mu}m$ 정도 크기의 전자밀도가 높은 둥근 과립들이 밀집되어 있었다. DG세포는 비교적 드물게 관찰되는 $50{\mu}m\sim20{\mu}m$정도 크기의 난원형의 세포로서 전자밀도가 비교적 높게 나타났다. 세포질 속에는 과립성소포체, 미토콘드리아 등 세포소기관과 평균 $0.2{\mu}m$정도 크기의 전자밀도가 높은 둥근 과립들을 소지하고 있었다. CD세포들은 뇌신경절의 양측 미배부위 (caudo-dorsal parts)에 밀집되어 있는 타원형의 세포로서 세포질에 비해 큰 핵을 소지하고 있었다. 핵질속에는 과립상의 이질 염색질들이 발달해 있었으며 세포질 속에는 평균 $0.12{\mu}m$정도 크기의 비교적 작은 많은 둥근 과립들을 소지하고 있었다. BG세포는 뇌신경절의 신경내막 주변부에서 드물게 관찰되는 장타원형의 세포로서 전자밀도가 높아서 검게 보였다. 세포질에는 평균 $0.1{\mu}m$정도 크기의 작은 둥근 과립들이 보였다. Y세포는 신경분비세포 중 가장 작은 세포(크기 $9\times6.6{\mu}m$)로서 뇌신경절의 중배부위 (medio-dorsal parts)와 미배부위 (caudo-dorsal parts) 사이에서 주로 관찰되었다. 이들의 세포질에는 평균 $0.08{\mu}m$정도 크기의 매우 작은 둥근 과립들이 집단을 이루고 있었다. 신경망은 뇌신경절의 중앙부위에 위치해 있으며 축색 종말내에는 전자밀도가 높은 둥근 과립 (직경 $0.07\sim0.03{\mu}m$)과 투명소포(직경 $0.03{\mu}m$)들이 다수 존재하였는데 이들은 축색종말의 한계막이 함입되어 (invagination)형성된 exocytosome 상태로 배출되는 특징을 보였다.

  • PDF