• Title/Summary/Keyword: Cerebral Ischemic Injury

Search Result 128, Processing Time 0.02 seconds

Attenuated Cerebral Ischemic Injury by Polyethylene Glycol-Conjugated Hemoglobin

  • Cho, Geum-Sil;Choi, In-Young;Choi, Yoo-Keum;Kim, Seul-Ki;Cai, Ying;Nho, Kwang;Lee, Jae-Chul
    • Biomolecules & Therapeutics
    • /
    • v.17 no.3
    • /
    • pp.270-275
    • /
    • 2009
  • Polyethylene glycol-conjugated hemoglobin (PEG-Hb) has been proposed as a blood substitute for transfusion due to their plasma expansion and oxygen transport capabilities. The protective effect of PEG-Hb on cerebral hypoxic-ischemic injury was investigated in neonatal hypoxia model and adult rat focal cerebral ischemia model. As intravenously administered 30 min before the onset of hypoxia, PEG-Hb markedly protected cerebral hypoxic injury in a neonatal rat hypoxia model. A similar treatment of PEG-Hb largely reduced the ischemic injury ensuing after 2-h middle cerebral artery occlusion followed by 22-h reperfusion. Consistently, neurological disorder was significantly improved by PEG-Hb. The results indicate that the pharmacological blockade of cerebral ischemic injury by using PEG-Hb may provide a useful strategy for the treatment of cerebral stroke.

Cerebral ischemic injury decreases α-synuclein expression in brain tissue and glutamate-exposed HT22 cells

  • Koh, Phil-Ok
    • Laboraroty Animal Research
    • /
    • v.33 no.3
    • /
    • pp.244-250
    • /
    • 2017
  • ${\alpha}$-Synuclein is abundantly expressed in neuronal tissue, plays an essential role in the pathogenesis of neurodegenerative disorders, and exerts a neuroprotective effect against oxidative stress. Cerebral ischemia causes severe neurological disorders and neuronal dysfunction. In this study, we examined ${\alpha}$-synuclein expression in middle cerebral artery occlusion (MCAO)-induced cerebral ischemic injury and neuronal cells damaged by glutamate treatment. MCAO surgical operation was performed on male Sprague-Dawley rats, and brain samples were isolated 24 hours after MCAO. We confirmed neurological behavior deficit, infarction area, and histopathological changes following MCAO injury. A proteomic approach and Western blot analysis demonstrated a decrease in ${\alpha}$-synuclein in the cerebral cortices after MCAO injury. Moreover, glutamate treatment induced neuronal cell death and decreased ${\alpha}$-synuclein expression in a hippocampal-derived cell line in a dose-dependent manner. It is known that ${\alpha}$-synuclein regulates neuronal survival, and low levels of ${\alpha}$-synuclein expression result in cytotoxicity. Thus, these results suggest that cerebral ischemic injury leads to a reduction in ${\alpha}$-synuclein and consequently causes serious brain damage.

Time-dependent Modulation of Cerebral Ischemic Injury by Activated Macrophages/microglia after Lipopolysaccharide Microinjection into Rat Corpus Callosum

  • Lee, Jae-Chul;Kim, Won-Ki
    • Proceedings of the PSK Conference
    • /
    • 2003.10a
    • /
    • pp.106-107
    • /
    • 2003
  • tIn brain ischemic insult, inflammatory cells such as macrophages and lymphocytes are chemo-attracted into the brain lesion and release cytokines, resulting in an activation of microglia that are functionally equivalent to peripheral macrophages in the central nervous system. In cerebral ischemic insults, activated inflammatory cells such as microglia and macrophages may be implicated in the pattern and degree of ischemic injury by producing various bioactive mediators. (omitted)

  • PDF

Protective Effect of an Ethanol Extract Mixture of Curcuma longae Radix, Phellinus linteus, and Scutellariae Radix on Oxidative Neuronal Damage (Curcuma longae Radix, Phellinus linteus 및 Scutellariae Radix 혼합추출물의 산화성 신경세포손상 보호효과)

  • Kim, Joo-Youn;Kweon, Ki-Yeon;Lee, Hong-Kyu;Kim, Seung-Hwan;Yoo, Jae-Kuk;Bae, Ki-Hwan;Seong, Yeon-Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.1
    • /
    • pp.31-37
    • /
    • 2011
  • Previous work demonstrated that an ethanol extract (HS0608) of a mixture of three medicinal plants of Curcuma longae radix, Phellinus linteus, and Scutellariae radix markedly inhibits $A{\beta}$ (25-35)-induced neurotoxicity. The present study was performed to further verify the neuroprotective effect of HS0608 on oxidative and ischemic cerebral injury using cultured rat cortical neurons and rats. Exposure of cultured cortical neurons to $100\;{\mu}M$ hydrogen peroxide ($H_2O_2$) induced neuronal apoptotic death. At $10-100{\mu}g/ml$, HS0608 inhibited neuronal death, elevation of intracellular calcium concentration ($[Ca^{2+}]_i$), and generation of reactive oxygen species (ROS) induced by $H_2O_2$ in primary cultures of rat cortical neurons. In vivo, HS0608 prevented cerebral ischemic injury induced by 2-h middle cerebral artery occlusion (MCAO) and 24-h reperfusion. The ischemic infarct and edema were significantly reduced in rats that received HS0608 (200 mg/kg). These results suggest that the anti-oxidative properties of HS0608 may be responsible for its neuroprotective effect against focal cerebral ischemic injury and that HS0608 may have a therapeutic role in neurodegenerative diseases such as stroke.

Patterns of ischemic injury on brain images in neonatal group B Streptococcal meningitis

  • Choi, Seo Yeol;Kim, Jong-Wan;Ko, Ji Won;Lee, Young Seok;Chang, Young Pyo
    • Clinical and Experimental Pediatrics
    • /
    • v.61 no.8
    • /
    • pp.245-252
    • /
    • 2018
  • Purpose: This study investigated patterns of ischemic injury observed in brain images from patients with neonatal group B Streptococcal (GBS) meningitis. Methods: Clinical findings and brain images from eight term or near-term newborn infants with GBS meningitis were reviewed. Results: GBS meningitis was confirmed in all 8 infants via cerebrospinal fluid (CSF) analysis, and patients tested positive for GBS in both blood and CSF cultures. Six infants (75.0%) showed early onset manifestation of the disease (<7 days); the remaining 2 (25.0%) showed late onset manifestation. In 6 infants (75%), cranial ultrasonography showed focal or diffuse echogenicity, suggesting hypoxic-ischemic injury in the basal ganglia, cerebral hemispheres, and periventricular or subcortical white matter; these findings are compatible with meningitis. Findings from magnetic resonance imaging (MRI) were compatible with bacterial meningitis, showing prominent leptomeningeal enhancement, a widening echogenic interhemisphere, and ventricular wall thickening in all infants. Restrictive ischemic lesions observed through diffusion-weighted imaging were evident in all eight infants. Patterns of ischemic injury as detected through MRI were subdivided into 3 groups: 3 infants (37.5%) predominantly showed multiple punctuate lesions in the basal ganglia, 2 infants (25.0%) showed focal or diffuse cerebral infarcts, and 3 infants (37.5%) predominantly showed focal subcortical or periventricular white matter lesions. Four infants (50%) showed significant developmental delay or cerebral palsy. Conclusion: Certain patterns of ischemic injury are commonly recognized in brain images from patients with neonatal GBS meningitis, and this ischemic complication may modify disease processes and contribute to poor neurologic outcomes.

Simvastatin Reduces Lipopolysaccharides-Accelerated Cerebral Ischemic Injury via Inhibition of Nuclear Factor-kappa B Activity

  • Jalin, Angela M.A. Anthony;Lee, Jae-Chul;Cho, Geum-Sil;Kim, Chunsook;Ju, Chung;Pahk, Kisoo;Song, Hwa Young;Kim, Won-Ki
    • Biomolecules & Therapeutics
    • /
    • v.23 no.6
    • /
    • pp.531-538
    • /
    • 2015
  • Preceding infection or inflammation such as bacterial meningitis has been associated with poor outcomes after stroke. Previously, we reported that intracorpus callosum microinjection of lipopolysaccharides (LPS) strongly accelerated the ischemia/reperfusionevoked brain tissue damage via recruiting inflammatory cells into the ischemic lesion. Simvastatin, 3-hydroxy-3-methylgultaryl (HMG)-CoA reductase inhibitor, has been shown to reduce inflammatory responses in vascular diseases. Thus, we investigated whether simvastatin could reduce the LPS-accelerated ischemic injury. Simvastatin (20 mg/kg) was orally administered to rats prior to cerebral ischemic insults (4 times at 72, 48, 25, and 1-h pre-ischemia). LPS was microinjected into rat corpus callosum 1 day before the ischemic injury. Treatment of simvastatin reduced the LPS-accelerated infarct size by 73%, and decreased the ischemia/reperfusion-induced expressions of pro-inflammatory mediators such as iNOS, COX-2 and IL-$1{\beta}$ in LPS-injected rat brains. However, simvastatin did not reduce the infiltration of microglial/macrophageal cells into the LPS-pretreated brain lesion. In vitro migration assay also showed that simvastatin did not inhibit the monocyte chemoattractant protein-1-evoked migration of microglial/macrophageal cells. Instead, simvastatin inhibited the nuclear translocation of NF-${\kappa}B$, a key signaling event in expressions of various proinflammatory mediators, by decreasing the degradation of $I{\kappa}B$. The present results indicate that simvastatin may be beneficial particularly to the accelerated cerebral ischemic injury under inflammatory or infectious conditions.

Cerebral Postischemic Hyperperfusion in PET and SPECT (PET과 SPECT에서 나타나는 뇌허혈후 과관류)

  • Cho, Ihn-Ho
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.6
    • /
    • pp.343-351
    • /
    • 2001
  • Cerebral post-ischemic hyperperfusion has been observed at the acute and subacute periods of ischemic stroke. In the animal stroke model, early post-ischemic hyperperfusion is the mark of recanalization of the occluded artery with reperfusion. In the PET studios of both humans and experimental animals, early post-ischemic hyperperfusion is not a key factor in the development of tissue infarction and indicates the spontaneous reperfusion of the ischemic brain tissue without late infarction or with small infarction. But late post-ischemic hyperperfusion shows the worse prognosis with reperfusion injury associated with brain tissue necrosis. Early post-ischemic hyperperfusion defined by PET and SPECT may be useful in predicting the prognosis of ischemic stroke and the effect of thrombolytic therapy.

  • PDF

Influence of Ischemic Duration on Extent of Focal Ischemic Brain Injury Induced by Middle Cerebral Artery Occlusion in Rats (백서의 중대뇌동맥 페쇄에 의한 국소 허혈성 뇌손상의 정도에 미치는 허혈 시간의 영향)

  • 구희정;정경자;김명수;진창배
    • Biomolecules & Therapeutics
    • /
    • v.8 no.2
    • /
    • pp.160-166
    • /
    • 2000
  • The present study examined influence of various ischemic duration on extent of focal ischemic brain injury induced by middle cerebral artery occlusion (MCAO) in rats. The MCAO was produced by insertion of a 17 mm silicone-coated 4-0 nylon surgical thread to the origin of MCA through the internal carotid artery for 30, 60, 90, 120 min (transient) or 24 hr (permanent) in male Sprague-Dawley rats under isoflurane anesthesia. Reperfusion in transient MCAO models was achieved by pulling the thread out of the internal carotid artery. Only rats showing neurological deficits characterized by left hemiparesis and/or circling to the left, were included in cerebral ischemic groups. The rats were sacrificed 24 hr after MCAO and seven serial coronal slices of the brain were stained with 2,3,5-triphenyltetrazolium chloride. Infarct size was measured using a computerized image analyzer. Ischemic damage was common in the frontoparietal cortex (somatosensory area) and the lateral segment of the striatum while damage to the medial segment of the striatum depended on the duration of the occlusion. In the 30-min MCAO grouts, however, infarcted region was primarily confined to the striatum and it was difficult to clearly delineate the region since there was mixed population of live and dead cells in the nucleus. Infarct volume was generally increased depending on the duration of MCAO, showing the most severe damage in the permanent MCAO group. However, there was no significant difference in infarct size between the 90-min and 120-min MCAO groups. % Edema also tended to increase depending on the duration of MCAO. The results suggest that the various focal ischemic rat models established in the present study can be used to evaluate in vivo neuroprotective activities of candidate compounds or to elucidate pathophysiological mechanisms of ischemic neuronal cell death.

  • PDF

Caffeic acid phenethyl ester protects against photothrombotic cortical ischemic injury in mice

  • Hwang, Sun Ae;Kim, Chi Dae;Lee, Won Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.1
    • /
    • pp.101-110
    • /
    • 2018
  • In this study, we aimed to investigate the neuroprotective effects of caffeic acid phenethyl ester (CAPE), an active component of propolis purified from honeybee hives, on photothrombotic cortical ischemic injury in mice. Permanent focal ischemia was achieved in the medial frontal and somatosensory cortices of anesthetized male C57BL/6 mice by irradiation of the skull with cold light laser in combination with systemic administration of rose bengal. The animals were treated with CAPE (0.5-5 mg/kg, i.p.) twice 1 and 6 h after ischemic insult. CAPE significantly reduced the infarct size as well as the expression of tumor necrosis $factor-{\alpha}$, hypoxiainducible $factor-1{\alpha}$ monocyte chemoattractant protein-1, $interleukin-1{\alpha}$, and indoleamine 2,3-dioxygenase in the cerebral cortex ipsilateral to the photothrombosis. Moreover, it induced an increase in heme oxygenase-1 immunoreactivity and interleukin-10 expression. These results suggest that CAPE exerts a remarkable neuroprotective effect on ischemic brain injury via its anti-inflammatory properties, thereby providing a benefit to the therapy of cerebral infarction.

Dexmedetomidine alleviates blood-brain barrier disruption in rats after cerebral ischemia-reperfusion by suppressing JNK and p38 MAPK signaling

  • Canmin Zhu;Dili Wang;Chang Chang;Aofei Liu;Ji Zhou;Ting Yang;Yuanfeng Jiang;Xia Li;Weijian Jiang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.3
    • /
    • pp.239-252
    • /
    • 2024
  • Dexmedetomidine displays multiple mechanisms of neuroprotection in ameliorating ischemic brain injury. In this study, we explored the beneficial effects of dexmedetomidine on blood-brain barrier (BBB) integrity and neuroinflammation in cerebral ischemia/reperfusion injury. Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 1.5 h and reperfusion for 24 h to establish a rat model of cerebral ischemia/reperfusion injury. Dexmedetomidine (9 ㎍/kg) was administered to rats 30 min after MCAO through intravenous injection, and SB203580 (a p38 MAPK inhibitor, 200 ㎍/kg) was injected intraperitoneally 30 min before MCAO. Brain damages were evaluated by 2,3,5-triphenyltetrazolium chloride staining, hematoxylin-eosin staining, Nissl staining, and brain water content assessment. BBB permeability was examined by Evans blue staining. Expression levels of claudin-5, zonula occludens-1, occludin, and matrix metalloproteinase-9 (MMP-9) as well as M1/M2 phenotypes-associated markers were assessed using immunofluorescence, RT-qPCR, Western blotting, and gelatin zymography. Enzyme-linked immunosorbent assay was used to examine inflammatory cytokine levels. We found that dexmedetomidine or SB203580 attenuated infarct volume, brain edema, BBB permeability, and neuroinflammation, and promoted M2 microglial polarization after cerebral ischemia/reperfusion injury. Increased MMP-9 activity by ischemia/reperfusion injury was inhibited by dexmedetomidine or SB203580. Dexmedetomidine inhibited the activation of the ERK, JNK, and p38 MAPK pathways. Moreover, activation of JNK or p38 MAPK reversed the protective effects of dexmedetomidine against ischemic brain injury. Overall, dexmedetomidine ameliorated brain injury by alleviating BBB permeability and promoting M2 polarization in experimental cerebral ischemia/reperfusion injury model by inhibiting the activation of JNK and p38 MAPK pathways.