• Title/Summary/Keyword: Cerebellar granule cell

Search Result 27, Processing Time 0.024 seconds

Subacute Nicotine Exposure in Cultured Cerebellar Cells Increased the Release and Uptake of Glutamate

  • Lim, Dong-Koo;Park, Sun-Hee;Choi, Woo-Jeoung
    • Archives of Pharmacal Research
    • /
    • v.23 no.5
    • /
    • pp.488-494
    • /
    • 2000
  • Cerebellar granule and glial cells prepared from 7 day-old rat pups were used to investigate the effects of sub-acute nicotine exposure on the glutamatergic nervous system. These cells were exposed to nicotine in various concentrations for 2 to 10 days in situ. Nicotine-exposure did not result in any changes in cerebellar granule and glial cell viability at concentrations of up to 500 $\mu\textrm{M}$. In cerebellar granule cells, the basal extracellular levels of glutamate, aspartate and glycine were enhanced in the nicotine-exposed granule cells. In addition, the responses of N-methyl-D-aspartate (NMDA)-induced glutamate release were enhanced at low NMDA concentrations in the nicotine-exposed granule cells. However, this decreased at higher NMDA concentrations. The glutaminase activity was increased after nicotine exposure. In cerebellar glial cells, glutamate uptake in the nicotine-exposed glial cells were either increased at low nicotine exposure levels or decreased at higher levels. The inhibition of glutamate uptake by L-trans-pyrollidine-2,4-dicarboxylic acid (PDC) was lower in glial cells exposed to 50 $\mu\textrm{M}$ nicotine. Glutamine synthetase activity was lower in glial cells exposed to 100 or 500 $\mu\textrm{M}$ of nicotine. These results indicate that the properties of cerebellar granule and glial cells may alter after subacute nicotine exposure. Furthermore, they suggest that nicotine exposure during development may modulate glutamatergic nervous activity.

  • PDF

Protective Effect of Fangchinoline on Cyanide-Induced Neuro-toxicity in Cultured Rat Cerebellar Granule Cells

  • Cho, Soon-Ok;Seong, Yeon-Hee
    • Archives of Pharmacal Research
    • /
    • v.25 no.3
    • /
    • pp.349-356
    • /
    • 2002
  • The present study was performed to examine the effect of fangchinoline, a bis- benzylisoquinoline alkaloid, which exhibits the characteristics of a $Ca^{2+}$ channel blocker, on cyanide-induced neurotoxicity using cultured rat cerebellar granule neurons. NaCN produced a concentration-dependent reduction of cell viability, which was blocked by MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, verapamil, L-type$Ca^{2+}$channel blocker, and L-NAME, a nitric oxide synthase inhibitor. Pretreatment with fangchinoline over a concentration range of 0.1 to 10 $\mu$M significantly decreased the NaCN-induced neuronal cell death, glutamate release into medium, and elevation of $[Ca^{2+}]_i$ and oxidants generation. These results suggest that fangchinoline may mitigate the harmful effects of cyanide-induced neuronal cell death by interfering with $[Ca^{2+}]_i$influx, due to its function as a $Ca^{2+}$ channel blocker, and then by inhibiting glutamate release and oxidants generation.

Differential Effect of Homocysteic Acid and Cysteic Acid on Changes of Inositol Phosphates and $[Ca^{2+}]i$ in Rat Cerebellar Granule Cells

  • Kim, Won-Ki;Pae, Young-Sook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.1
    • /
    • pp.41-48
    • /
    • 1998
  • The present study was undertaken to characterize homocysteic acid (HCA)-and cysteic acid (CA)-mediated formation of inositol phosphates (InsP) in primary culture of rat cerebellar granule cells. HCA and CA stimulated InsP formation in a dose-dependent manner, which was prevented by the N-methyl-D-aspartate (NMDA) receptor antagonist D,L-2-amino-5-phosphopentanoic acid (APV). CA-, but not HCA-, mediated InsP formation was in part prevented by the metabotropic glutamate receptor antagonist ?${\alpha}$-methyl-4-carboxyphenylglycine ($({\pm})$-MCPG). Both HCA- and CA-mediated increases in intracellular calcium concentration were completely blocked by APV, but were not altered by $({\pm})$-MCPG. CA-mediated InsP formation was in part prevented by removal of endogenous glutamate. In contrast, the glutamate transport blocker L-aspartic acid-${\beta}$-hydroxamate synergistically increased CA responses. These data indicate that in cerebellar granule cells HCA mediates InsP formation wholly by activating NMDA receptor. In contrast, CA stimulates InsP formation by activating both NMDA receptor and metabotropic glutamate receptor, and in part by releasing endogenous glutamate into extracellular milieu.

  • PDF

Neurotoxicity Assessment of Methamphetamine and Cadmium Using Cultured Neuronal Cells of Long-Evans Rats (신경세포 배양법을 이용한 methamphetamine과 cadmium의 신경독성 평가)

  • Cho, Dae-Hyun;Kim, Jun-Gyon;Jeong, Yong;Lee, Bong-Hun;Kim, Eun-Youb;Kim, Jeong-Goo;Cho, Tai-Soon;Kim, Jin-Suk;Moon, Hwa-Hwey
    • Toxicological Research
    • /
    • v.12 no.1
    • /
    • pp.69-79
    • /
    • 1996
  • Primary culture of cerebellar neuronal cells derived from 8-day old Long-Evans rats was used. Pure granule cells, astrocytes or mixed cells culture systems were prepared. These cells were differentiated and developed synaptic connections. And the astrocytes were identified by immunostaining with glial fibrillary acidic protein (GFAP). Methamphetamine (MAP), which acts on dopaminergic system and cadmium (Cd), a toxic heavy metal, were applied and biochemical assays and electrophysiological studies were performed. $LC_50$ values estimated by MTT assay of MAP and Cd were 3 mM and 2$\mu M$ respectively. Cells were treated with 1 mM or 2 mM MAP and 1$\mu M$ $CdCl_2$ for 48 hour, and the incubation media were analyzed for the content of released LDH. MAP (2 mM) and Cd significantly increased the LDH release. Cell viability was decreased in both groups and some cytopathological changes like cell swelling or vacuolization were seen. The cerebellar granule cells were used for measuring membrane currents using whole-cell clamp technique. Sodium and potassium currents were not affected by MAP neither Cd, but calcium current was significantly reduced by Cd but not affected by MAP. Therefore, in vitro neurotoxicity test system using neuronaI cells and astrocytes cultures were established and can be used in screening of potential neurotoxic chemicals.

  • PDF

Selective Suppression of a Subset of Bax-dependent Neuronal Death by a Cell Permeable Peptide Inhibitor of Bax, BIP

  • Kim, Soo-Young;Kim, Hyun;Sun, Woong
    • Animal cells and systems
    • /
    • v.12 no.4
    • /
    • pp.211-217
    • /
    • 2008
  • Bax, a pro-apoptotic member of Bcl-2 family proteins, plays a central role in the mitochondria-dependent apoptosis. Apoptotic signals induce the translocation of Bax from cytosol into the mitochondria, which triggers the release of apoptogenic molecules such as cytochrome C and apoptosis-inducing factor, AIF. Bax-inhibiting peptide(BIP) is a cell permeable peptide comprised of five amino acids designed from the Bax-interaction domain of Ku70. Because BIP inhibits Bax translocation and Bax-mediated release of cytochrome C, BIP suppresses Bax-dependent apoptosis. In this study, we observed that BIP inhibited staurosporine-induced neuronal death in cultured cerebral cortex and cerebellar granule cells, but BIP failed to rescue granule cells from trophic signal deprivation-induced neuronal death, although both staurosporine-induced and trophic signal deprivation-induced neuronal death are dependent on Bax. These findings suggest that the mechanisms of the Bax activation may differ depending on the type of cell death induction, and thus BIP exhibits selective suppression of a subtype of Bax-dependent neuronal death.

Inhibitory Effect of Fangchinoline on Excitatory Amino Acids. Induced Neurotoxicity in Cultured Rat Cerebellar Granule Cells

  • Kim, Su-Don;Oh, Sei-Kwan;Kim, Hack-Seang;Seong, Yeon-Hee
    • Archives of Pharmacal Research
    • /
    • v.24 no.2
    • /
    • pp.164-170
    • /
    • 2001
  • Glutamate receptors-mediated excitoxicity is believed to play a role in the pathophysiology of neurodegenerative diseases. The present study was performed to evaluate the inhibitory effect of fanschinoline, a bis-benzylisoquinoline alkaloid, which has a characteristic as a $Ca^{2+}$channel blockers on excitatory amino acids (EAAS)-induced neurotoxicity in cultured rat cerebellar granule neuron. Fangchinoline (1 and 5$\mu\textrm{m}$) inhibited glutamate (1 ${m}M$), N-methyl-D-aspartate (NMDA; 1 ${m}M$) and kainate (100$\mu\textrm{m}$)-induced neuronal cell death which was measured by trypan blue exclusion test. Fangchinoline (1 and 5$\mu\textrm{m}$) inhibited glutamate release into medium induced by NMDA (1 ${m}M$) and kainate (100$\mu\textrm{m}$), which was measured by HPLC. And fangchinoline (5$\mu\textrm{m}$) inhibited glutamate (1 ${m}M$)-induced elevation of intracellular calcium concentration. These results suggest that inhibition of $Ca^{2+}$influx by fangchinoline may contribute to the beneficial effects on neurodegenerative effect of glutamate in pathophysiological conditions.

  • PDF

Protection of NMDA-Induced Neuronal Cell Damage by Methanol Extract of Myristica Fragrans Seeds in Cultured Rat Cerebellar Granule Cells

  • Ban, Ju-Yeon;Cho, Soon-Ock;Kim, Ji-Ye;Bang, Kyong-Hwan;Seong, Nak-Sul;Song, Kyung-Sik;Bae, Ki-Whan;Seong, Yeon-Hee
    • Natural Product Sciences
    • /
    • v.10 no.6
    • /
    • pp.289-295
    • /
    • 2004
  • Myristica fragrans seed from Myristica fragrans Houtt (Myristicaceae) has various pharmacological activities peripherally and centrally. The present study aims to investigate the effect of the methanol extract of Myristica fragrans seed (MF) on N-methyl-D-aspartate (NMDA)-induced neurotoxicity in primary cultured rat cerebellar granule neuron. MF, over a concentration range of 0.05 to $5\;{\mu}g/ml$, inhibited NMDA (1 mM)- induced neuronal cell death, which was measured by trypan blue exclusion test and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay. MF $(0.5\;{\mu}g/ml)$ inhibited glutamate release into medium induced by NMDA (1 mM), which was measured by HPLC. Pretreatrnent of MF $(0.5\;{\mu}g/ml)$ inhibited NMDA (1 mM)-induced elevation of cytosolic calcium concentration $([Ca^{2+}]_c)$, which was measured by a fluorescent dye, Fura 2-AM, and generation of reactive oxygen species (ROS). These results suggest that MF prevents NMDA-induced neuronal cell damage in vitro.

S-Allyl-L-cysteine, a Garlic Compound, Selectively Protects Cultured Neurons from ER Stress-induced Neuronal Death

  • Ito Yoshihisa
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2004.11a
    • /
    • pp.124-128
    • /
    • 2004
  • We have assessed amyloid ${\beta}-peptide$ $(A{\beta})-induced$ neurotoxicity in primary neurons and organotypic hippocampal slice cultures (OHC) in rat. Exposing cultured hippocampal and cerebellar granule neurons to $A{\beta}$ resulted in a decrease of MTT reduction, and in destruction of neuronal integrity. Treatment of these neurons with tunicamycin, an inhibitor of N-glycosylation in the endoplasmic reticulum (ER), also decreased MTT reduction in these neurons. S-allyl-L-cysteine (SAC), an active organosulfur compound in aged garlic extract, protected hippocampal but not cerebellar granule neurons against $A{\beta}$- or tunicamycin-induced toxicity. In the hippocampal neurons, protein expressions of casapse-12 and GRP 78 were significantly increased after $A{\beta}_{25-35}$ or tunicamycin treatment. The increase in the expression of caspase-12 was suppressed by simultaneously adding $1{\mu}M$ SAC in these neurons. In contrast, in the cerebellar granule neurons, the expression of caspase-12 was extremely lower than that in the hippocampal neurons, and an increase in the expression by $A{\beta}_{25-35}$ or tunicamycin was not detected. In OHC, ibotenic acid (IBO), a NMDA receptor agonist, induced concentration-dependent neuronal death. When $A{\beta}$ was combined with IBO, there was more intense cell death than with IBO alone. SAC protected neurons in the CA3 area and the dentate gyrus (DG) from the cell death induced by IBO in combination with $A{\beta}$, although there was no change in the CA1 area. Although protein expression of casapse-12 in the CA3 area and the DG was significantly increased after the simultaneous treatment of AI3 and IBO, no increase in the expression was observed in the CA1 area. These results suggest that SAC could protect against the neuronal cell death induced by the activation of caspase-12 in primary cultures and OHC. It is also suggested that multiple mechanisms may be involved in neuronal death induced by AI3 and AI3 in combination with IBO.

  • PDF

Toxic Effect of Inhaled Toluene on the Neural Cell (톨루엔 흡입이 신경세포에 미치는 독성)

  • 김대병;류종훈;신대섭;이종권;정경자;류승렬;최기환;이선희;김부영
    • Toxicological Research
    • /
    • v.13 no.3
    • /
    • pp.251-256
    • /
    • 1997
  • Toluene inhalation increases glutamate level and its receptor in various brain regions. In this study, nitric oxide synthase (NOS) activities were investigated in various rat brain regions using NADPH diaphorase staining method which examined histochemical changes of NOS in the neural cells. Also, in vitro LDH leakage assay and MTT test were performed to investigate the toxic influences of toluene in cultured granule cell of rat cerebellum which was significantly affected with toluene in vivo. Rats were exposed to toluene of 10000 ppm for 3 days. 7 days and 14 days by 20 min $\times$ 2 times a day. NADPH diaphorase staining was processed in the different brain regions after inhalation. NADPH diaphorase staining density was not significantly changed at 3 days inhalation group, but the density decreased in proportion to the duration of toluene inhalation. Over 30% of staining density was decreased at 14 days group which was maximum duration of inhalation in this study. The tendency of staining density decrease was significant in granule cell of cerebellum. Cell death by toluene exposure was observed in cultured cerebellar granule cell. $EC_{50}$ measured with LDH leakage assay and MTT test were 43 mM and 72 mM respectively.

  • PDF

Fabrication and Characterization of Multi-Channel Electrode Array (MEA) (다중 채널 전극의 제작 및 특성 평가)

  • Seong, Rak-Seon;Gwon, Gwang-Min;Park, Jeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.9
    • /
    • pp.423-430
    • /
    • 2002
  • The fabrication and experimentation of multi-channel electrodes which enable detecting and recording of multi-site neuronal signals have been investigated. A multi-channel electrode array was fabricated by depositing 2000${\AA}$ thick Au layer on the 1000${\AA}$ thick Ti adhesion layer on a glass wafer. The metal paths were patterned by wet etching and passivated by depositing a PECVD silicon nitride insulation layer to prevent signals from intermixing or cross-talking. After placing a thin slice of rat cerebellar granule cell in the culture ring located in central portion of the multi-channel electrode plate, a neuronal signal from an electrode which is in contact with the cerebellar granule cell has been detected. It was found that the electrode impedance ranges 200㏀∼1㏁ and the impedance is not changed by cleaning with nitric acid. Also, the impedance is inversely proportion to the exposed electrode area and the cross-talk is negligible when the electrode spacing is bigger than 600$\mu\textrm{m}$. The amplitude and frequency of the measured action potential were 38㎷ and 2㎑, which are typical values. From the experimental results, the fabricated multi-channel electrode array proved to be suitable for multi-site neuronal signal detection for the analysis of a complicated cell network.