• 제목/요약/키워드: Cerebellar Model Articulation Computer(CMAC)

검색결과 4건 처리시간 0.018초

다중 샘플링 타임을 갖는 CMAC 학습 제어기 실현: 역진자 제어 (CMAC Learning Controller Implementation With Multiple Sampling Rate: An Inverted Pendulum Example)

  • 이병수
    • 제어로봇시스템학회논문지
    • /
    • 제13권4호
    • /
    • pp.279-285
    • /
    • 2007
  • The objective of the research is two fold. The first is to design and propose a stable and robust learning control algorithm. The controller is CMAC Learning Controller which consists of a model-based controller, such as LQR or PID, as a reference control and a CMAC. The second objective is to implement a reference control and CMAC at two different sampling rates. Generally, a conventional controller is designed based on a mathematical plant model. However, increasing complexity of the plant and accuracy requirement on mathematical models nearly prohibits the application of the conventional controller design approach. To avoid inherent complexity and unavoidable uncertainty in modeling, biology mimetic methods have been developed. One of such attempts is Cerebellar Model Articulation Computer(CMAC) developed by Albus. CMAC has two main disadvantages. The first disadvantage of CMAC is increasing memory requirement with increasing number of input variables and with increasing accuracy demand. The memory needs can be solved with cheap memories due to recent development of new memory technology. The second disadvantage is a demand for processing powers which could be an obstacle especially when CMAC should be implemented in real-time. To overcome the disadvantages of CMAC, we propose CMAC learning controller with multiple sampling rates. With this approach a conventional controller which is a reference to CMAC at high enough sampling rate but CMAC runs at the processor's unoccupied time. To show efficiency of the proposed method, an inverted pendulum controller is designed and implemented. We also demonstrate it's possibility as an industrial control solution and robustness against a modeling uncertainty.

A Reinforcement Learning with CMAC

  • Kwon, Sung-Gyu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권4호
    • /
    • pp.271-276
    • /
    • 2006
  • To implement a generalization of value functions in Adaptive Search Element (ASE)-reinforcement learning, CMAC (Cerebellar Model Articulation Controller) is integrated into ASE controller. ASE-reinforcement learning scheme is briefly studied to discuss how CMAC is integrated into ASE controller. Neighbourhood Sequential Training for CMAC is utilized to establish the look-up table and to produce discrete control outputs. In computer simulation, an ASE controller and a couple of ASE-CMAC neural network are trained to balance the inverted pendulum on a cart. The number of trials until the controllers are established and the learning performance of the controllers are evaluated to find that generalization ability of the CMAC improves the speed of the ASE-reinforcement learning enough to realize the cartpole control system.

Acrobot Swing Up Control을 위한 Credit-Assigned-CMAC-based 강화학습 (Credit-Assigned-CMAC-based Reinforcement Learn ing with Application to the Acrobot Swing Up Control Problem)

  • 장시영;신연용;서승환;서일홍
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권7호
    • /
    • pp.517-524
    • /
    • 2004
  • For real world applications of reinforcement learning techniques, function approximation or generalization will be required to avoid curse of dimensionality. For this, an improved function approximation-based reinforcement teaming method is proposed to speed up convergence by using CA-CMAC(Credit-Assigned Cerebellar Model Articulation Controller). To show that our proposed CACRL(CA-CMAC-based Reinforcement Learning) performs better than the CRL(CMAC- based Reinforcement Learning), computer simulation and experiment results are illustrated, where a swing-up control Problem of an acrobot is considered.

Acrobot Swing Up 제어를 위한 Credit-Assigned-CMAC 기반의 강화학습 (Credit-Assigned-CMAC-based Reinforcement Learning with application to the Acrobot Swing Up Control Problem)

  • 신연용;장시영;서승환;서일홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.621-624
    • /
    • 2003
  • For real world applications of reinforcement learning techniques, function approximation or generalization will be required to avoid curse of dimensionality. For this, an improved function approximation-based reinforcement learning method is proposed to speed up convergence by using CA-CMAC(Credit-Assigned Cerebellar Model Articulation Controller). To show that our proposed CACRL(CA-CMAC-based Reinforcement Learning) performs better than the CRL(CMAC-based Reinforcement Learning), computer simulation results are illustrated, where a swing-up control problem of an acrobot is considered.

  • PDF