• Title/Summary/Keyword: Ceramics

Search Result 5,059, Processing Time 0.035 seconds

Bending Strength of Textured Alumina Prepared by Slip Casting in a Strong Magnetic Field

  • Suzuki, Tohru S.;Uchikoshi, Tetsuo;Morita, Koji;Hirage, Keijiro;Sakka, Yoshio
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1099-1100
    • /
    • 2006
  • The mechanical properties of ceramics materials can be tailored by designing their microstructures. We have reported that development of texture can be controlled by slip casting in a strong magnetic field followed by heating even for diamagnetic ceramics such as alumina. A strong magnetic field of 12T was applied to the suspension indcuding alumina powder to rotate each particle during slip casting. The sintering was conducted at the desired temperature in air without a magnetic field. C-axis of alumina was parallel to the magnetic field. Bending strength of textured alumina depended on the direction of oriented microstructure.

  • PDF

Acoustic Emission and Indentation Fracture Method for the Engineering Ceramics (세라미스 파괴인성평가에 있어서 IF법과 AE)

  • 김부안;문창권
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.61-65
    • /
    • 2001
  • The fracture toughness of ceramics can be measure by such various methods as DT (double torsion), CN (chevron notch) etc. But, the application of these methods to the engineering ceramics is very difficult because of its very high hardness. So, IF (indentation fracture) method is generally used for the evaluation of fracture toughness of ceramics. The Median crack induced by the sharp Vickers indenter was compared with the detected AE (acoustic emission) signal. On the silicon nitride ceramics, the AE test results agree fairly well with the median crack occurance and growth process. But, on the alumina, very many complicated crack signals were detected besides median crack. It can be considered that the IF methods must be used in limited engineering ceramics materials.

  • PDF

Effect of Yttria and Ceria on Mechanical Properties and Oxidation Behaviors of $\alpha$-Sialon Ceramics ($\alpha$-Sialon 세라믹스의 역학적 성질과 산화거동에 미치는 $Y_2O_3$$CeO_2$의 첨가영향)

  • 이은복;이홍림;조덕호;박원철
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.11
    • /
    • pp.941-948
    • /
    • 1993
  • The powder mixture of Si3N4-AlN-Y2O3, Si3N4-AlN-CeO2 and Si3N4-AlN-Y2O3-CeO2 system was hot-pressed at 175$0^{\circ}C$ for 2h in N2 to prepare $\alpha$-Sialon ceramics. The mechanical property and oxidation behaviour of the prepared $\alpha$-Sialon ceramics were investigated. At 120$0^{\circ}C$, oxidation resistance was best for the Y2O3 added $\alpha$-Sialon ceramics and oxidation rate increased when the amount of CeO2 increased. But when the mixture of Y2O3 and CeO2 added $\alpha$-Sialon ceramics showed a good oxidation resistance. Fracture toughness of (Y2O3+CeO2) added $\alpha$-Sialon ceramics was higher than Y2O3 added $\alpha$-Sialon ceramics.

  • PDF

Effects of Pre-sintered Granules on the Characteristics of Porous Zirconia (가소결된 그레뉼이 다공질 지르코니아 세라믹스의 특성에 미치는 영향)

  • Lee, Eun-Jung;Ha, Jang-Hoon;Kim, Yang-Do;Song, In-Hyuck
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.566-574
    • /
    • 2012
  • Porous zirconia ceramics are widely considered to be important due to their unique properties and potential applications. In this paper, we propose a novel approach to produce porous zirconia ceramics. The linear shrinkage of the prepared porous zirconia ceramics could be controlled to 4% by incorporating pre-sintered zirconia granules and hollow polymeric spheres. We also investigated the effect of pre-sintered zirconia granules on the microstructure and the properties, such as the porosity, pore distribution, and bending strength of the porous zirconia ceramics.

An Experimental Study on the Turning Machinability of Machinable Ceramics (Machinable Ceramics 의 가공 성능 평가를 위한 실험적 연구)

  • Gang, Jae-Hun;Lee, Jae-Gyeong
    • 한국기계연구소 소보
    • /
    • s.20
    • /
    • pp.79-87
    • /
    • 1990
  • Advanced ceramics have some excellent properties as the material for the mechanical component. It is, however, very difficult to grind ceramics with high efficiency because of their high strength, hardness and brittleness. Thus it is required also by a strong boom of demands for development of Machinable ceramics with high machinability in the most of industries. In present research, experiments are carried out to compare the machinability of sample Machinable ceramics. A $\ell$N(Aluminum Nitride) with additives of BN(Boron Nitride), yttrium. CaO are turned with cut-off tool type tungsten carbide bite using conventional turning machine.

  • PDF

Grinding Characteristic of Advanced Ceramics (파인세라믹의 연삭가공특성)

  • Jung, Yoon-Gyo;Kang, Jae-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.2
    • /
    • pp.105-112
    • /
    • 1990
  • Advanced ceramics have some excellent properities as the material for the mechanical component. It is, however, very difficult to grind ceramics with high efficiency because of their high strength, hardness and brittleness. In this paper, some experiments are carried out to find the basic grinding characteristic of advanced ceramics. Representative advanced ceramics, such as AL/sub 2/ O/sub 3/, ZrO/sub 2/, SiC and Si/sub 3/N/sub 4/and ground with diamond wheels. Special attention is paid to comparison between the conventional and creep feed grinding. Results obtained in this study provide some useful informations to attain the high efficiency grinding of advanced ceramics.

  • PDF

Linear and Nonlinear Dielectric Ceramics for High-Power Energy Storage Capacitor Applications

  • Peddigari, Mahesh;Palneedi, Haribabu;Hwang, Geon-Tae;Ryu, Jungho
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.1
    • /
    • pp.1-23
    • /
    • 2019
  • Dielectric materials with inherently high power densities and fast discharge rates are particularly suitable for pulsed power capacitors. The ongoing multifaceted efforts on developing these capacitors are focused on improving their energy density and storage efficiency, as well as ensuring their reliable operation over long periods, including under harsh environments. This review article summarizes the studies that have been conducted to date on the development of high-performance dielectric ceramics for employment in pulsed power capacitors. The energy storage characteristics of various lead-based and lead-free ceramics belonging to linear and nonlinear dielectrics are discussed. Various strategies such as mechanical confinement, self-confinement, core-shell structuring, glass incorporation, chemical modifications, and special sintering routes have been adopted to tailor the electrical properties and energy storage performances of dielectric ceramics. In addition, this review article highlights the challenges and opportunities associated with the development of pulsed power capacitors.

Computer Simulation of Sintering and Grain Growth

  • Matsubara, Hideaki
    • Journal of Powder Materials
    • /
    • v.5 no.4
    • /
    • pp.324-328
    • /
    • 1998
  • This paper is aimed to study the computer simulation of sintering process for ceramics by Monte Carlo and molecular dynamics methods. Plural mechanisms of mass transfer were designed in the MC simulation of sintering process for micron size particles; the transfer of pore lattices for shrinkage and the transfer of solid lattices for grain growth ran in the calculation arrays. The MD simulation was performed in the case of nano size particles of ionic ceramics and showed the characteristic features in sintering process at atomic levels. The MC and MD simulations for sintering process are useful for microstructural design for ceramics.

  • PDF