• Title/Summary/Keyword: Ceramic-glass

Search Result 1,315, Processing Time 0.027 seconds

Deposition of Heavy Metal Oxide Glass Thin Films by R.F. Magnetron Sputtering (스퍼터링 방법을 이용한 중금속 산화물 유리 박막의 증착)

  • Kim, Woong-Kwern;Heo, Jong;Je, Jung-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.6
    • /
    • pp.669-676
    • /
    • 1995
  • In this study, EO glass films were deposited by R.F. magnetron sputtering using EO glass target. The glass formation of the EO film was greatly dependent on the substrate temperature and the crystallization started at approximately 28$0^{\circ}C$. As the temperature of the substrate or the oxygen content in the sputtering gas increased, UV/VIS/NIR absorption edge moved toward longer wavelength. A wave guiding phenomenon was observed from the prism-coupler experiment and a fluorescence of 1.06${\mu}{\textrm}{m}$ originated from 4Fe3/2longrightarrow4I11/2 transition of Nd3+ was detected from the film containing Nd3+ ions.

  • PDF

Electrical Relaxation in Silica Glasses and Nonlinearity in Electrical Conductivity (실리카 유리의 전기이완 특성과 비선형적 전기전도도)

  • 신동욱
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.923-929
    • /
    • 1999
  • The cause of optical nonlinearity induced in thermally poled silica glass is believed to be the space charge polarization. Since the second order optical nonlinearity (electro-optic effect) can be used in optical switches the optical nonlinearity in silica glass has drawn a large attention. Space charge polarization occurs when an ionic conducting material is subjected to dc electric field by the blocking electrode. Thermal poling performed to induce the optical nonlinearity in silica glass is basically identical to the process generating space charge polarization. As a first step to understand the mechanism of space charge polarization in silica glass hence the induced optical nonlinearity the absorption currents as functions of time were measured for various types of silica glasses and analyzed by the theory of space charge polarization. It was found that the electrical relaxation exhibited a step by the space charge polarization in the relatively long time range and dielectric loss peak showed a maximum at a specific temperature which is depending on type of silica glass. It was turned out that this relaxation might be a cause of nonlinearity in electrical conductivity of silica glass.

  • PDF

A Study on the Transparent Glass-Ceramics On Al2O3-SiO2 System (투명 결정화 유리에 관한 연구 - $Al_2O_3-SiO_2$계에 관하여)

  • 박용완;김용욱
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.3
    • /
    • pp.223-231
    • /
    • 1992
  • CaO and ZnO were added to Al2O3-SiO2 binary system respectively as flux, then ZrO2 and TiO2 were applied as nucleating agent to these CaO-Al2O3-SiO2 and ZnO-Al2O3-SiO2 ternary system glass. The transparency could not be kept in CaO-Al2O3-SiO2 system glass, whereas the transparent glass-ceramics were prepared in ZnO-Al2O3-SiO2 system glass containing ZrO2 as the nucleating agent. At this time the optimum heating temperatures for the nucleation and the crystal growth were 78$0^{\circ}C$ and 97$0^{\circ}C$. The sizes of the precipitated crystals in the transparent glass-ceramics were below 0.1 ${\mu}{\textrm}{m}$, and their light transmissibilities were more than 80%.

  • PDF

Role of Added Metal Oxide in the Adherence Mechanism of Low Melting Glass to Several Metal Seals (저융점유리와 각종금속과의 봉착기구에 있어서 금속산화물의 역할)

  • 정창주
    • Journal of the Korean Ceramic Society
    • /
    • v.11 no.1
    • /
    • pp.3-9
    • /
    • 1974
  • The role of added metal oxide in the adherence mechanism of low melting glass to several metal plates such as oxygen free high conducting copper, low carbon steel, chrominum galvanized on copper, and stainless steel was investigated. The metal oxide which added to glass were cupric oxide, ferric oxide, chromic oxide, and stainless steel oxide. The glass to that various metla oxide were added, sealed with several metal plates in the electric furnace at $650^{\circ}C$ for 5 minutes. The results as follows; 1) The interfacial reaction was promoted and strong chemical bonding with glass and metals by which the surface energy was decreased showed excellent sealing by addition of metal oxide. 2) When the interfacial reaction of glass and metals was promoted by addition of metal oxide found out that various adhernece mechanism were related to the sealing. 3) When the amount of metal oxide addition was 3-5% the excellent sealing was achieved.

  • PDF

Chemical Durability of Simulated Waste Glasses (모의 폐기물유리의 화학적 내구성)

  • 현상훈;송원선
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.4
    • /
    • pp.521-531
    • /
    • 1989
  • The dependence of the chemical durability of simulated waste glasses containing the simplified waste similar to the SRP waste on compositions of host glasses, amounts of waste loading, and kinds of leachants has been investigated as a basic study on the waste immobilization through vitrification. The maximum limit of the amount of waste loading for glassforming with the host sodium borosilicate glasses selected in this study was 50wt%. The chemical durability of waste glasses whose host glass belonged to the immiscible composition region was much higher than that of waste glasses whose host glass belonged to the miscible composition region. The former waste glass showed lower chemical durability in deionized and silicate waters than in brine, while the latter glass showed the lowest chemical durability in deionized and silicate waters than in brine, while the latter glass showed the lowest chemical durability in silicate water. It was also observed that the total leaching rates in brine were noticeably small in comparison with those in other solutions. The composition of the host borosilicate glass which was suitable for the treatment of the waste through vitrification was found to be 25 Na2O-5B2O3-70SiO2(wt.%).

  • PDF

Preparation of Fine Single-Crystalline Particles of Ferroxplana, Ba2Zn2Fe12O22 from Crystallization of Glass (유리결정화에 의한 Ferroxplana Ba2Zn2Fe12O22 미세 단결정의 제조)

  • 김성재;김동호;김태옥
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.10
    • /
    • pp.765-772
    • /
    • 1992
  • As the fundamental research of preparation of fine single crystalline ferroxplana by means of glass-crystallization methods using steel twin-roller the properties of ferroxplana extracted from cyrstallized glass were studied. Most of all the specimens quenched by twin-roller at about 1350$^{\circ}C$ were glass phase, the crystallization of these glass had multi-steps and ferroxplana phase was only stable untill 900$^{\circ}C$, began to be decomposed from about 950$^{\circ}C$ in glass. The morphology of particle could be controlled by the composition and crystallization condition, and Zn2+ was replaced by reduced Fe2+ which is 2∼3% contents of total Fe. Ferroxplana extracted had such magnetic properties as Ms=34 emu/g, mHc=10 Oe and Curie Temperature, Tc=425K.

  • PDF

Chemical Strengthening Involving Outward Diffusion Process of Na+ Ion in Iron-containing Soda-lime Silicate Glass

  • Choi, Hyun-Bin;Kang, Eun-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.2
    • /
    • pp.133-136
    • /
    • 2015
  • The outward diffusion of $Na^+$ ions in iron-bearing soda lime silicate glass via oxidation heat treatment before the ion exchange process is artificially induced in order to increase the amount of ions exchanged during the ion exchange process. The effect of the addition process is analyzed through measuring the bending strength, the weight change, and the inter-diffusion coefficient after the ion exchange process. The glass strength is increased when the outward diffusion of $Na^+$ ions via oxidation heat treatment before the ion exchange process is added. For the glass subjected to the additional process, the weight change and diffusion depth increase compared with the glass not subjected to the process. The interdiffusion coefficient is also slightly increased as a result of the additional process.

Effect of V2O5 Content and Pre-Sintering Atmosphere on Adhesive Property of Glass Frit for Laser Sealing of OLED (OLED 레이저 실링용 글라스 프릿에서 V2O5 함량 및 가소성 분위기가 접합 특성에 미치는 영향)

  • Jeong, HyeonJin;Lee, Mijai;Lee, Youngjin;Kim, Jin-Ho;Jeon, Dae-Woo;Hwang, Jonghee;Lee, Jungsoo;Yang, Yunsung;Youk, Sookyung;Park, Tae-Ho;Moon, Yun-Gon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.8
    • /
    • pp.489-493
    • /
    • 2016
  • In this study, the effect of vanadium oxide ($V_2O_5$) content and pre-sintering atmosphere on sealing property of glass frit that consisted of $V_2O_5-BaO-ZnO-P_2O_5-TeO_2-CuO-Fe_2O_3-SeO_2$ was investigated by XPS (X-ray photoelectron spectroscopy). The content of V2O5 was changed to 15, 30, and 45 mol%, and the pre-sintering was carried out in air and $N_2$ condition, respectively. XPS analysis conducted before and after laser irradiation with identical sample. Before laser treatment, glass frits that were pre-sintered at air condition showed both $V^{4+}$ and $V^{5+}$, but the valence state was changed to $V^{5+}$ after laser irradiation when the glass frits contained 30 and 45 mol% $V_2O_5$; this change led to non-adhesive property. On the other hand, glass frits that were pre-sintered at $N_2$ condition exhibited only $V^{4+}$ and it showed fine adhesion irrespective of the $V_2O_5$ content. As a result, the existence of $V^{4+}$ seems to be a major factor for controlling the adhesive property of glass frit for laser sealing.

Electrical Properties of Eco-Friendly RuO2-Based Thick-Film Resistors Containing CaO-ZnO-B2O3-Al2O3-SiO2 System Glass for AlN Substrate (Electrical Properties of Eco-Friendly RuO2-Based Thick-Film Resistors Containing CaO-ZnO-B2O3-Al2O3-SiO2 계 유리가 적용된 질화알루미늄 기판용 RuO2계 친환경 후막저항의 전기적 특성 연구)

  • Kim, Min-Sik;Kim, Hyeong-Jun;Kim, Hyung-Tae;Kim, Dong-Jin;Kim, Young-Do;Ryu, Sung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.467-473
    • /
    • 2010
  • The objective of this study is to prepare lead-free thick film resistor (TFR) paste compatible with AlN substrate for hybrid microelectronics. For this purpose, CaO-ZnO-$B_2O_3-Al_2O_3-SiO_2$ glass system was chosen as a sintering aid of $RuO_2$. The effects of the weight ratio of CaO to ZnO in glass composition, the glass content and the sintering temperature on the electrical properties of TFR were investigated. $RuO_2$ as a conductive and glass powder were dispersed in an organic binder to obtain printable paste and then thick-film was formed by screen printing, followed by sintering at the range between $750^{\circ}C$ and $900^{\circ}C$ for 10 min with a heating rate of $50^{\circ}C$/min in an ambient atmosphere. The addition of ZnO to glass composition and sintering at higher temperature resulted in increasing sheet resistance and decreasing temperature coefficient of resistance. Using $RuO_2$-based resistor paste containing 40 wt%glass of CaO-20.5%ZnO-25%$B_2O_3$-7%$Al_2O_3$-15%$SiO_2$ composition, it is possible to produce thick film resistor on AlN substrate with sheet resistance of $10.6\Omega/\spuare$ and the temperature coefficient of resistance of 702ppm/$^{\circ}C$ after sintering at $850^{\circ}C$.

The Properties on Ceramic/glass Composites of SiO2-B2O3-R(CaO, BaO, ZnO, Bi2O3 Borosilicate Glass System for Low Temperature Ceramics (저온 소결 세라믹스용 SiO2-B2O3-R(CaO, BaO, ZnO, Bi2O3 붕규산염계 세라믹/유리 복합체의 특성)

  • Kim, Kwan-Soo;Yoon, Sang-Ok;Shim, Sang-Heung;Park, Jong-Guk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.19-24
    • /
    • 2007
  • The effects of $B_2O_3-SiO_2-R(R;CaO,\;BaO,\;ZnO,\;Bi_2O_3)$ borosilicate glass system on the sintering behavior and microwave dielectric properties of ceramic/glass composites were investigated as functions of modifier, glass addition ($30{\sim}50\;vol%$) and sintering temperature ($500{\sim}900^{\circ}C$ for 2 hrs). The addition of 50 and 45 vol% glass ensured successful sintering below $900^{\circ}C$. Sintering characteristics of the composites were well described in terms of modifier. Borosilicate glass enhanced the reaction with $Al_{2}O_{3}$ to form pores, second phases and liquid phases, which was responsible to component of modifier. Dielectric constant (${\varepsilon}_{r},\;Q{\times}f_{o}$) and temperature coefficient of resonant frequency (${\tau}_{f}$) of the composite with 50 and 45 vol% glass contents($B_{2}O_{3}:SiO_{2}:R=25:10:65$) demonstrated A-CaBS(7.8, 2,560 GHz, -81ppm/$^{\circ}C$), A-BaBs(5.8, 3.130 GHz, -64 ppm/$^{\circ}C$), A-ZnBS(5.7, 17,800 GHz, -21 ppm/$^{\circ}C$), A-BiBs(45 vol% glass in total)(8.3, 2,700 GHz, -45 ppm/$^{\circ}C$) which is applicable to substrate requiring an low dielectric properties.