• Title/Summary/Keyword: Ceramic-ceramic

Search Result 14,889, Processing Time 0.033 seconds

Characterization of Environment-Friendly Ceramic Coating Materials (친환경적인 분말형 세라믹 페인트의 특성평가)

  • 이제철;신영훈;김태현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.521-526
    • /
    • 2002
  • In this paper, we described about the characteristic evaluation of environment-friendly ceramic paint with calcium-silicate mineral as a main binder. Particularly, we performed discharge of the environmental poisoning materials(e.g. VOCs, heavy metal, etc.), and properties of paint slurry and coating film of the ceramic paint. In the comparison of the ceramic paint with natural paint and mineral paint which were known as our environment-friendly paints, ceramic paint had good characteristics in the environmental safety and properies of wet slurry and dried coating film.

  • PDF

Ceramic - Polymer Nanocomposite: Alternate Choice of Bone

  • Sarkar, Debasish;Chu, Min-Cheol;Cho, Seong-Jai
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.6
    • /
    • pp.309-319
    • /
    • 2008
  • This study evaluates a range of materials that may be used to design prostheses for bone. It is found that nanocrystalline ceramic-polymer composite could be the best material for prosthetic bone with respect to biocompatibility, morphology, chemistry, and compatibility with the piezoelectric and mechanical behavior of long human bones, such as the femur.

Dynamic behavior of cracked ceramic reinforced aluminum composite beam

  • Selmi, Abdellatif
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.387-393
    • /
    • 2022
  • This paper presents the vibration analysis of cracked ceramic-reinforced aluminum composite beams by using a method based on changes in modal strain energy. The crack is considered to be straight. The effective properties of composite materials of the beams are estimated through Mori-Tanaka micromechanical model. Comparison study and numerical simulations with various parameters; ceramic volume fraction, reinforcement aspect ratio, ratio of the reinforcement Young's modulus to the matrix Young's modulus and ratio of the reinforcement density to the matrix density are taken into investigation. Results demonstrate the pronounced effects of these parameters on intact and cracked ceramic aluminum beams.