• Title/Summary/Keyword: Ceramic tube

Search Result 187, Processing Time 0.032 seconds

Fabrication and Adhesion Strength Evaluation of Glass Sealants for Ceramic to Ceramic Component Joining (세라믹-세라믹 컴포넌트 접합용 글라스 실란트의 제조 및 접합력 평가)

  • Heo, Yu Jin;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.89-94
    • /
    • 2019
  • Glass base sealant is required as a ceramic-ceramic joining material between α-alumina insulation cap and β-alumina electrolyte tube in the development of NaS battery cell package for electrical energy storage system. The fabrication of glass frit by thermal quenching method, phase analysis, particle size analysis, coefficient of thermal expansion and surface roughness according to the glass compositions were analyzed for the fabrication of glass sealing paste for ceramic-ceramic joining. Also, a new evaluation method of the adhesion strength of glass sealant at the small area in ceramic-ceramic joining component was proposed using conventional Dage bond tester that was used to measure the adhesion of solder ball joint.

Micro-machining of Glass Air Hole using Ultrasonic Machining (초음파 가공에 의한 미세 에어홀 가공 기술)

  • 김병희;전성건;남권선;김헌영;전병희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.48-52
    • /
    • 2004
  • Ultrasonic machining is effective for machining of extreme hard and brittle materials, including glass, ceramic, carbide, graphite. The major machining principle involves the direct hammering as well as the impact of abrasive panicles on the workpiece. Also, it involve cavitation erosion. The general workpiece is flat side. This study attempted micro hole machining of a curved surface of glass tube. Ultrasonic machining is fault of the slow machining speed. An experiment does and got 16 seconds validity machining time as increasing the processing speed. Moreover, entrance crack and surface roughness was similar both machining speed is slow and fast. Several micro hole of glass tube machined using one micro tool, but tool wear is infinitesimal.

  • PDF

EFFECTS OF HYDROFLUORIC ACID CONCENTRATION & ETCHING TIME ON THE SHEAR BOND STRENGTH BETWEEN LITHIUM DISILICATE CERAMIC AND RESIN CEMENT (불산 식각 농도 및 시간이 lithium disilicate 도재와 레진시멘트의 전단결합강도에 미치는 영향)

  • Seo, Jae-Min;Park, Charn-Woon;Ahn, Seung-Geun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.4
    • /
    • pp.407-418
    • /
    • 2007
  • Purpose: The objective of this study was to evaluate the effects of hydrofluoric acid concentration & etching time on the shear bond strength between IPS Empress 2 ceramic and resin cement. Material and methods: Thirty three rectangular shape ceramic specimens($20{\times}12{\times}5mm$ size, IPS Empress 2 core materials) were used for this study. The ceramic specimens divided into ten experimental groups with three specimens in each group and were etched with hydrofluoric acid(4%, 9%) according to different etching times(30s, 60s, 90s, 120s, 180s). Etched surfaces of ceramic specimens were bonded with resin cement(Rely X Unicorn) using acrylic glass tube. All cemented specimens were tested under shear loading until fracture on universal testing machine at a crosshead speed of 0.5mm/min and the maximum load at fracture(kg) was recorded. Collected shear bond strength data were analyzed with one way ANOVA and Duncan tests. All etched ceramic surfaces were examined morphologically using SEM(scanning electron microscopy). Results: Shear bond strength of etching group$(35.89{\sim}68.01MPa)$ had four to seven times greater than no-etching group$(9.53{\pm}2.29MPa)$. The ceramic specimen etched with 4% hydrofluoric acid for 60s showed the maximum shear bond strength$(68.01{\pm}11.78MPa)$. Ceramic surface etched with 4% hydrofluoric acid for 60s showed most retentive surface texture. Conclusion: It is considered that 60s etching with 4% hydrofluoric acid is optimal etching methods for IPS Empress 2 ceramic bonding.

Electrical Characteristics and Discharge Condition of Ceramic Metal Halide Lamp with Operating Property (구동특성에 따른 세라믹 메탈 할라이드 램프의 전기적 특성 및 방전현상에 관한 연구)

  • Jang, Hyeok-Jin;Kim, Nam-Gon;Yang, Jong-Kyung;Kim, Woo-Young;Park, Hyung-Jun;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.388-389
    • /
    • 2009
  • The use of arc tubes made of ceramic material further enhanced some of the metal halide lamp's properties. These properties translate into higher efficacy with better color rendering, stable color through lamp long life. Recently, due to an increase in the application of the ceramic metal-halide lamp, the study for the property etc. according to Ballast's driving scheme and the study for arc tube material, optimization of gas and so on are being proceeded to improve the property of the lamp. Especially, to control ceramic metal-halide lamp, the vigorous study and practical use with respect to Electronic Ballast, which has been improved in the disadvantages of the conventional Magnetic Ballast are made. In this paper, Electrical characteristics and gas insulation destroy time are analyzed by comparing magnetic ballast with electronic ballast.

  • PDF

Development of Ceramic Composite Membranes for Gas Separation: V. Synthesis of Nanoparticulate Silica Membranes by the Pressurized Sol-Gel Coating Technique (기체분리용 세라믹 복합분리막의 개발 : V. 가압 졸-겔 코팅법에 의한 rrmaltp입자 실리카 막의 합성)

  • 현상훈;윤성필;김준학
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.3
    • /
    • pp.189-198
    • /
    • 1993
  • A new pressurized sol-gel coating technique forming membrane layers inside pores of the porous support by the simple operation has been developed. Crack-free and reproducible nanoparticulate silica membranes supported on the porous $\alpha$-alumina tube are synthesized by pressurized coating at 600kPa for 2hr. The pore radius and N2 gas permiability at the room temperature of silica membrane layers are 8$\AA$ and 7.0$\times$10-7mol/$m^2$.s.Pa, respectively. The mechanism of N2 gas transfer through synthesized membrane layers is the perfect Knudeen flow, and the thermal stability of the silica composite membranes is excellent upto 40$0^{\circ}C$.

  • PDF

Dependency of SnO2 System Carbon Monoxide Gas Sensor on the Atmospheric Temperature & Humidity ($SnO_2$계 일산화탄소 가스 감지 소자의 주위온도, 습도 의존성에 관한 연구)

  • 정형진;김종만;이전국
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.8
    • /
    • pp.1004-1010
    • /
    • 1990
  • SnO2-ThO2-PdCl2-In2O3 gas sensing ceramic systems were studied in order to lowr the operating temperatures and reduce the dependence of ambient temperatures and humidities. Sensing materials were coated by brush on the alumina tube followed by the impregnation of solidfier(ethylsilicate). Coated species were dried and sintered at 75$0^{\circ}C$ for 30min. carbon monoxide gas detecting sensitiviteis were measured in various ambinet temperatures and humidities. In the composition of 94SnO2-5ThO2-PdCl2 system carbon monoxide gas detecting sensors showed the highest detecting sensitivities and the lowest operating temperature(15$0^{\circ}C$). As the ambient temperatures and humidities were increased, sensitivities were decreased. Because the oscillation effects were observed at high humidities, it was suggested that the sensitivities of sensors depend greatly on the humidities.

  • PDF

A Cutoff Probe for the Measurement of High Density Plasma

  • Yu, Gwang-Ho;Na, Byeong-Geun;Kim, Dae-Ung;Yu, Sin-Jae;Kim, Jeong-Hyeong;Seong, Dae-Jin;Sin, Yong-Hyeon;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.148-148
    • /
    • 2012
  • A cutoff probe is the novel diagnostic method to get the absolute plasma density with simple system and less assumption. However, high density of ion flux from plasma on probe tip can make the error of plasma density measurement because the dielectric material of probe tip can be damaged by ion flux. We proposed a shielded cutoff probe using the ceramic tube for protection from ion flux. The ceramic tube on probe tip can intercept the ion flux from plasma. The transmitted spectrum using the shielded cutoff probe is good agreement with E/M wave simulation result (CST Microwave Studio) and previous circuit simulation of cutoff probe [1]. From the analysis of the measured transmitted spectrum base on the circuit modeling, the parallel resonance frequency is same as the unshielded cutoff probe case. The obtained results of electron density is presented and discussed in wide range of experimental conditions, together with comparison result with previous cutoff method.

  • PDF

Preparation of AlN Powder Using Mesoporous Alumina and Its Characterization (메조포러스 알루미나를 이용한 AlN 분말 제조 및 특성분석)

  • Kim, Eun Bee;Lee, Yoon Joo;Shin, Dong Geun;Kwon, Woo Teck;Kim, Soo Ryong;Kang, Mi Sook;Kim, Young Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.544-548
    • /
    • 2014
  • Aluminum nitride was synthesized using a carbothermal method from mesoporous alumina having a high surface area (> $1,000m^2/g$) as an aluminum source and CNTs (carbon nano tubes) as a carbon source. In this case the mesoporous alumina was used as the starting material instead of ${\alpha}-Al_2O_3$ with the expectation that the mesopores in mesoporous alumina act as channels for N2 gas and elimination of CO generated as by-product. It is also expected that the synthetic temperature should be lower compared to the use of ${\alpha}-Al_2O_3$ as a starting material due to its high surface area. The crystallinity of the produced aluminum nitride was studied by XRD and FT-IR, and the microstructure was investigated by FE-SEM. Also the purity of the aluminum nitride was analyzed through N/O determinator and ICP analysis.