• Title/Summary/Keyword: Ceramic tool

Search Result 224, Processing Time 0.051 seconds

Thick-Film Strain-gage Ceramic-Pressure Sensor (세라믹 다이어프램을 이용한 후막 스트레인 게이지 압력센서)

  • 이성재;박하용;민남기
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.12
    • /
    • pp.987-993
    • /
    • 2001
  • In this paper, we presents the construction details and output characteristics of a thick film piezoresistive strain gage. The thick film was printed on the ceramic diaphragm back side by screen printing and cured at 850$^{\circ}C$. The strain distribution and deflection on ceramic diaphragm were performed with finite-element method(FEM tool ANSYS-5.3). Various thick film strain gage characteristics were analysed, including nonlinearity, hysteresis, stability and sensitivity of thick film strain gages.

  • PDF

The effect of microstructure of electrical discharge machinable silicon nitride on wear resistance (방전가공용 질화규소의 미세조직이 내마모에 미치는 영향)

  • 이수완;김성호;이명호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.1
    • /
    • pp.111-116
    • /
    • 1998
  • Silicon nitride is hard and tough ceramic material. Hereby, mechanical machinability is very poor. It has also high electrical resistance. Silicon nitride of extremely high electrical resistivity becomes conductive ceramic composite by adding 30 wt% TiN. Ceramics with high electrical conductivity can be electrical discharge machined. Using by the Electrical Discharge Machining (EDM) technique. $Si_3N_4-TiN$ ceramic composite with high electrical conductivity is utilized to make metal working tool. These tool materials have severe wear problem as well as oxidation. Post HIP processing after sintering $Si_3N_4-TiN$ ceramic composites was performed. The tribological property of $Si_3N_4-TiN$ composite as a function of content of TiN was investigated in air, at room temperature. The hardness, fracture toughness, and flexural strength were compared with the wear volume. SEM observation of wear tracks can make an explanation of wear mode of $Si_3N_4-TiN$ composite.

  • PDF

A Study on Cutting Force Measurement Using a Cylindrical Capacitive Spindle Sensor (주축 변위 센서를 이용한 절삭력 측정에 관한 연구)

  • 김일해;장동영;한동철
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.17-23
    • /
    • 2002
  • A cylindrical capacitance-type spindle displacement sensor was developed and its effectiveness as a system to monitor cutting forces during hard turning was tested in this research. The sensor was installed between the face of spindle cover and the chucking element and measured pure radial motion of the spindle under the condition with presence of roundness error at measured surface. To prove the effectiveness of the developed system hard aiming tests using ceramic inserts and tool steel as workpiece were conducted. The workpiece was hardened up to 65 Rc. The variations of pure radial motion of the spindle ware measured during the cutting tests. The signals from the sensor showed the same pattern of cutting force variations from the tool dynamometer due to the progress of tool wear. As the flank wear of the ceramic tool increased both static component of cutting forces and the amount of center shift of spindle orbit increased, Results from the research showed that the developed sensor could be utilized as an effective and cheap on-line sensing device to monitor cutting conditions and tool performance in the un-manned machining center.

Machinability of Presintered $Al_2O_3$ ceramics (알루미나 세라믹 예비소결제의 피절삭성)

  • Kim, Sung-Chung;Lee, Jae-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.1002-1012
    • /
    • 1997
  • When the presintered ceramics are machined with ceramic tool, the tool life becomes extremely short. The CBN tool exhibits the best performance in dry machining of the ceramics presintered at $1450^{\circ}C$ among all cutting tests. The roughness of the machined surface of the ceramics presintered below $1350^{\circ}C$ is smaller than that of the ceramics presintered at $1450^{\circ}C$ While the performance of the cemented carbide and CBN tools is better in dry than in wet machining, the diamond tool shows adverse tendency. The tool life is not affected by the feed rate and depth of cut. During the following full-sintering after the machining of the presintered ceramics, the surface roughness decreases up to 62%. The finished surface in machining the presintered ceramics is much better than that in machining the full-sintered ceramic.

Machinability investigation and sustainability assessment in FDHT with coated ceramic tool

  • Panda, Asutosh;Das, Sudhansu Ranjan;Dhupal, Debabrata
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.681-698
    • /
    • 2020
  • The paper addresses contribution to the modeling and optimization of major machinability parameters (cutting force, surface roughness, and tool wear) in finish dry hard turning (FDHT) for machinability evaluation of hardened AISI grade die steel D3 with PVD-TiN coated (Al2O3-TiCN) mixed ceramic tool insert. The turning trials are performed based on Taguchi's L18 orthogonal array design of experiments for the development of regression model as well as adequate model prediction by considering tool approach angle, nose radius, cutting speed, feed rate, and depth of cut as major machining parameters. The models or correlations are developed by employing multiple regression analysis (MRA). In addition, statistical technique (response surface methodology) followed by computational approaches (genetic algorithm and particle swarm optimization) have been employed for multiple response optimization. Thereafter, the effectiveness of proposed three (RSM, GA, PSO) optimization techniques are evaluated by confirmation test and subsequently the best optimization results have been used for estimation of energy consumption which includes savings of carbon footprint towards green machining and for tool life estimation followed by cost analysis to justify the economic feasibility of PVD-TiN coated Al2O3+TiCN mixed ceramic tool in FDHT operation. Finally, estimation of energy savings, economic analysis, and sustainability assessment are performed by employing carbon footprint analysis, Gilbert approach, and Pugh matrix, respectively. Novelty aspects, the present work: (i) contributes to practical industrial application of finish hard turning for the shaft and die makers to select the optimum cutting conditions in a range of hardness of 45-60 HRC, (ii) demonstrates the replacement of expensive, time-consuming conventional cylindrical grinding process and proposes the alternative of costlier CBN tool by utilizing ceramic tool in hard turning processes considering technological, economical and ecological aspects, which are helpful and efficient from industrial point of view, (iii) provides environment friendliness, cleaner production for machining of hardened steels, (iv) helps to improve the desirable machinability characteristics, and (v) serves as a knowledge for the development of a common language for sustainable manufacturing in both research field and industrial practice.

High Toughness Silicon Nitride Material in Machining of Compacted Graphite Iron

  • Park, Kwon-Hee;Lee, Kern-Woo;Lee, Joo-Wan;Sharon, Moshe
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.861-862
    • /
    • 2006
  • The suitable tools for CGI material has not been developed yet because of high hardness, high toughness and very low machininability compared to the grey cast iron. And the tool life has been decreased as the contents of Ti in CGI material. From this research, we were able to do the high speed machining by using high toughness silicon nitride ceramic tools. The silicon nitride ceramic tool grade was specially designed and prepared with microstructure of elongated grains with higher aspect ratio (c/a) than conventional one.

  • PDF

A Study on the Plasma Hot Machining to Improve the Machinability of Inconel 718 (Inconel 718 의 절삭성 개선을 위한 플라즈마 고온 절삭 가공법에 관한 연구)

  • 김진남
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.3
    • /
    • pp.67-76
    • /
    • 1995
  • An experimental study of hot machining has performed to improve the machinability of Inconel718. This experiment used plasma are for heating materials and Whisker0reinforce aluminum oxide ceramic tool insert. An assembled plasma heating system are described and experimental results from both conventional and plasma hot machining of Inconel 718 are compared. The experiments with plasma heating demonstrated the following effectiveness. 1)The cutting force was reduced with increasing surface temperature of workpiece from 450$^{\circ}C$ up to 720$^{\circ}C$ as much as approximately from 20 to 40%. 2) Surface roughness(Ra) was improved by as much as a factor 2 in case of one pass cutting with new ceramic tool inserts.3) The depth of cut notch were at promary cutting tool was significantly reduced.

  • PDF

An Experimental Study on Cutting Characteristic of Ceramics (세라믹스의 절삭거동에 관한 실험적 연구)

  • 이길우;김순태
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.5
    • /
    • pp.420-426
    • /
    • 1993
  • The machinability of ceramics has been experimentally studied. The experiments were conducted on alumina cernmics of various purity, quartz, and cordierite using the sintered diamond tools and CBN tools. Tool wasre, surface roughness, and cutting resistence were measured and analysed. It was found that the workpieces could be machined with the diamond and CBN tools, but the sintered diamond tools were more efficient for the machining of the high strength ceramics. The machining of alumina ceramics with sintered diamond tools showed that (1) wet machining prolonged tool life comparing with dry machining, (2) workpiecewith higher purity had better surface roughness, (3) severe cutting conditions led to the chipping and fracture of tool and increase of the surface roughness and cutting resistance, (4) 20~40m/min of cutting speed, 0.01~0.02mm/rev of feed, and 0.1~0.2mm of cutting depth are suggested as proper cutting conditions for the high strength ceramics.

  • PDF

Plasma 고온가공법을 이용한 Inconel 718의 선삭가공에 관한 연구

  • 김진남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.80-87
    • /
    • 1995
  • An experimental study of hot machining has performed to improve themachinability of Inconel 718. This experiment used plasma arc for heating materials and Whisker-reinforced aluminum oxide ceramic tool insert. An assembled plasma heating system are described and experimental results obtained from bothconventional and plasma hot machining of Iconel 718 are compared. Turning experiments with plasma heating demonstrated the following effectiveness. 1) The cutting force was reduced with increasing surface temperature of workpiece from 450 .deg. C up to 720 .deg. C as much as approximately from 20 to 40%. 2) Surface roughness(Ra) was improved by as much as a factor 2 in case of one pass cutting with new ceramic tool inserts. 3) The depth of cut notchwear at primarycutting tool was singificantly reduced.

  • PDF

A Comparative Study on Characteristics of Cutting Tool Materials Based on SiAlON Ceramics (SiAlON계 절삭공구 소재의 특성 비교)

  • Kim, Seongwon;Choi, Jae-Hyung
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.502-508
    • /
    • 2021
  • SiAlON-based ceramics are a type of oxynitride ceramics, which can be used as cutting tools for heat-resistant super alloys (HRSAs). These ceramics are derived from Si3N4 ceramics. SiAlON can be densified using gas-pressure reactive sintering from mixtures of oxides and nitrides. In this study, we prepare an α-/β-SiAlON ceramic composite with a composition of Yb0.03Y0.10Si10.6Al1.4O1.0N15.0. The structure and mechanical/thermal properties of the densified SiAlON specimen are characterized and compared with those of a commercial SiAlON cutting tool. By observing the crystallographic structures and microstructures, the constituent phases of each SiAlON ceramic, such as α-SiAlON, β-SiAlON, and intergranular phases, are identified. By evaluating the mechanical and thermal properties, the contribution of the constituent phases to these properties is discussed as well.