• Title/Summary/Keyword: Ceramic powders

Search Result 1,021, Processing Time 0.025 seconds

Vacuum Casting of Mn-Zn Ferrite Powders Prepared by Alcoholic Dehydration Method (알콜탈수법에 의해 제조된 Mn-Zn Ferrite 미분체의 진공주입성형)

  • 이경직;이대희;김창현;이창섭;이석기;이병교
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.11
    • /
    • pp.1107-1112
    • /
    • 1997
  • Mn-Zn ferrite powders prepared by an alcoholic dehydration method. Vacuum casting, a kind of wet forming process was examined with this powders. As binders, polyethylene glycol and polyvinyl alcohol were used. In order to estimate this conditions, fracture morphology, densities of green and sintered bodies and the microstructure were observed. High density and homogeneous microstructure in sintered bodies were obtained in the case of 0.1 wt% PEG or 0.5 wt% PVA.

  • PDF

Properties of Potashborosilicate Glass-ceramic Substrate by adding Al2O3 (Al2O3 첨가에 따른 potashborosilicate glass ceramic 기판의 특성변화에 관한연구)

  • 김용철
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.5 no.2
    • /
    • pp.53-58
    • /
    • 1998
  • Sintering and dielectric characteristics of substrates were estimated by mixing rate of alumina and potashborosilicate glass(PBSG) powders. PBSG powders were used 7761(corning code)and alumina powders were used in extra pure rate(99.9%) and had 0.1 ${\mu}$m mean size. After ball milling with organic additives green sheets which were casted by doctor blade machine were sintered at 800$^{\circ}C$ for 1∼3hrs. Microstructure, linear shrinkage and dielectric constant of substrates were surveyed in order to fabricate low-dielectric and low tem-perature sintering substrate.

A Study of PTCR Effects in Semiconducting BaTiO3 Prepared by Direct Wet Process (습식 직접합성법에 의한 반도성 BaTiO3의 PTCR 효과에 관한 연구)

  • 이경희;이병하;정연식
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.2
    • /
    • pp.111-116
    • /
    • 1987
  • By the method of direct wet process which has been developed in our laboratory, the high purity BaTiO3 powders could be synthesized from the room temperature to 90$^{\circ}C$ according to particle sizes. For to detect the PTCR effects, Sb2O3 wasdoped in the BaTiO3 powders which had been prepared on above method. As the results, the PTCR effects were in creased with the decreasing grain size of BaTiO3 powders.

  • PDF

Preparation of Monodispersed Titania from TPOT (TPOT로부터 단분산 TiO2분말 합성)

  • 안영필;최석홍
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.6
    • /
    • pp.677-684
    • /
    • 1988
  • Titania powders were obtained from the various hydrolysis condition the variation of Alkoxide, water/Alcohol, REaction, Temp., reaction time and solvent system were investigated. In this result, spherical monodisperesed titania gel powders(≒0.7${\mu}{\textrm}{m}$) were obtained using EtOH(as solvent), and this method had rapid reaction time compare with iso-PrOH(as solvent).

  • PDF

Effect of Multi-Sized Powder Mixture on Solid Casting and Sintering of Alumina

  • Cho, Kyeong-Sik;Lee, Hyun-Kwuon;Min, Jae-Hong
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.352-357
    • /
    • 2018
  • The slip casting process is widely used to make green bodies from ceramic slips into dense compacts with homogeneous microstructure. However, stress may be generated inside the green body during drying, and can lead to cracking and bending during sintering. When starting from the spherical powders with mono-size distribution to make the close packed body, interstitial voids on octahedral and tetrahedral sites are formed. In this research, experiments were carried out with powders of three size types (host powder (H), octahedral void filling powder (O) and tetrahedral void filling powder (T)) controlled for average particle size by milling from two commercial alumina powders. Slips were prepared using three different powder batches from H only, H+O or H+O+T mixed powders. After manufacturing green compacts by solid-casting, compacts were dried at constant temperature and humidity and sintered at $1650^{\circ}C$. Alumina samples fabricated from the multi-sized powder mixture had improved compacted and sintered densities.

Oxidation State of Manganese in LiMn2O4 Powders and its Effect on Electrochemcal Properties

  • Kim, Seon-Hye;Lee, Kook-Jae;Shim, Kwang-Bo;Kim, Chang-Sam
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1220-1221
    • /
    • 2006
  • [ $LiMn_2O_4$ ] powders for lithium ion batteries were synthesized from two separate raw material pairs of LiOH/MnO and $LiOH/MnO_2$. The powders prepared at 780 and $850^{\circ}C$ and their difference of electrochemical properties were investigated. Both powders calcined at 780 and $850^{\circ}C$ were composed of a single-phase spinel structure but those treated at $850^{\circ}C$ showed a lower intensity ratio of $I_{311}$ to $I_{400}$, a slightly larger lattice parameter, and an increased discharge capacity by 10% under $3.0{\sim}4.3V$ voltage range. The XPS study on the oxidation states of manganese repealed that powders made from LiOH/MnO had less $Mn^{3+}$ ion and gave better battery performances than those from $LiOH/MnO_2$.

  • PDF

Preparation and Characteristics of Ceramic Composite Powders Coated with $Al_2O_3$: (III) Composite Powders of $Al_2O_3-ZrO_2$ ($Al_2O_3$로 피복시킨 세라믹 복합분체의 제조 및 특성: (III) $Al_2O_3-ZrO_2$ 복합분체)

  • 현상훈;이지현;송원선
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.8
    • /
    • pp.667-673
    • /
    • 1992
  • The alumina-zirconia composite powders of core particle ZrO2 coated with Al2O3 were prepared by the hydrolysis-deposition of the mixed aluminum salt solution of Al2(SO4)3-Al(NO3)3-Urea. The effects of hydrolysis reaction and coating parameters on characteristics of coated powders and composites were also investigated. The degree of coating could be estimated from the ratio of tetra-/mono-ZrO2 present at the room temperature after heat-treating coated powders at 120$0^{\circ}C$ and the result of TEM observations. When the content of ZrO2 in the dispersed coating system, the coating time, and the volume ratio of water/solution were 50 mg/g, 180 min, and 5, respectively the coating efficiency was maximum (the ratio of tetra-/mono-ZrO2 was 87/13). The relative densities of coated Al2O3-ZrO2 composites sintered at 1$650^{\circ}C$ for 4 hrs were about 91~98% and the maximum ratio of tetra-/mono-ZrO2 in Al2O3-20wt% ZrO2 composites was 62/38.

  • PDF

A Study on the Sinterability of MgO-Al2O3-SiO2 System Ceramic Powders Prepared by Spray Pyrolysis Method (분무열분해법으로 제조한 MgO-Al2O3-SiO2계 화합물분체의 소결성)

  • 박정현;박찬욱;조경식
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.3
    • /
    • pp.347-360
    • /
    • 1989
  • Spinel, mullite, forsterite and cordierite composition powders were synthesized from Mg(NO3)2.6H2O, Al(NO3)3.9H2O and SiCl4-ethanol solution by spray pyrolysis method and the sinterability of these powders were investigated. The bulk density of spinel and mullite specimens sintered at 1,$700^{\circ}C$ for 1hr was 3.56g/㎤(99.5% relative density) and 3.16g/㎤(99.7% relative density), respectively. (Green compacts were made from powders prepared at 1,00$0^{\circ}C$). The bulk density of forsterite and cordierite specimens sintered at 1,480 and 1,40$0^{\circ}C$ for 2hrs were 3.217 and 2.155g/㎤, respectively. (Green compacts were made from powders prepared at 1,00$0^{\circ}C$). The constituent compositions of spinel and mullite specimens sintered at 1,$700^{\circ}C$ for 1hr were 27.5wt% MgO and 70.5wt% Al2O3, respectively. Vickers microhardness and fracture toughness of spinel sintered at the above condition were 13.7GPa and 2.6MN.m3/2, respectively, and room temperature bending strength, 425MPa, was nearly maintained even at the elevated temperature. In the case ofmullite specimens, those values were 13.5GPa, 2.2MN/m3/2 and 430MPa, respectively.

  • PDF

Comparative Analysis of Commercial Al2O3 Powders and the Dispersion Characteristics of Slurries Produced Using Them (상용 Al2O3 분말의 비교분석 및 이를 이용하여 제조한 슬러리의 분산 특성)

  • Mo-Se Kwon;Seung-Joon Yoo;Jin-Ho Kim;Kyoung-Hoon Jeong;Jong-Keun Lee;Ung-Soo Kim
    • Korean Journal of Materials Research
    • /
    • v.34 no.1
    • /
    • pp.27-33
    • /
    • 2024
  • Al2O3 has excellent sintering properties and is important in semiconductor manufacturing processes that require high-temperature resistance and chemical inertness in a plasma environment. In this study, a comprehensive analysis of the chemical characteristics, physical properties, crystal structure, and dispersion stability of three commercially available Al2O3 powders was conducted. The aim was to provide a technological foundation for selecting and utilizing appropriate Al2O3 powders in practical applications. All powders exhibited α-Al2O3 as the main phase, with the presence of beta-phase Na2O-11Al2O3 as the secondary phase. The highest Na+ ion leaching was observed in the aqueous slurry state due to the presence of the secondary phase. Although the average particle size difference among the three powders was not significant, distinct differences in particle size distribution were observed. ALG-1SH showed a broad particle size distribution, P162 exhibited a bimodal distribution, and AES-11 displayed a uniform unimodal distribution. High-concentration Al2O3 slurries showed differences in viscosity due to ion release when no dispersant was added, affecting the electrical double-layer thickness. Polycarboxylate was found to effectively enhance the dispersion stability of all three powders. In the dispersion stability analysis, ALG-1SH exhibited the slowest sedimentation tendency, as evidenced by the low TSI value, while P162 showed faster precipitation, influenced by the particle size distribution.