• Title/Summary/Keyword: Ceramic particle

Search Result 991, Processing Time 0.027 seconds

Loose and Dense Aggregate Particle Packing Models in Cement and Concrete

  • Kim, Jong-Cheol;Lim, Chang-Sung;Auh, Keun-Ho
    • The Korean Journal of Ceramics
    • /
    • v.6 no.1
    • /
    • pp.1-5
    • /
    • 2000
  • Particle packing properties are important to develop high technology products in the field of cement and concrete. Two types of particle packing models for aggregates with sand and cement were introduced: the loose and the dense aggregate packing. Aggregate packing models with randomly generated sand and cement particles in the interstices of aggregates fit the Furnas model very well. Different aggregate models show different packing properties with the experimental results. Main reason for the difference with the experimental results is due to sand rearrangement in the loose aggregate packing model and to aggregate relaxation in the dense aggregate packing model. In the experimental situation, aggregates seem to be more disordered and have a relaxed packing structure in the dense packing, and sands seem to have a more rearranged packing structure in the loose packing model.

  • PDF

Effect of Processing Parameters and Powder Size on Microstructures and Mechanical Properties of Y2O3 Coatings Fabricated by Suspension Plasma Spray

  • Kim, Sun-Joo;Lee, Jung-Ki;Oh, Yoon-Suk;Kim, Seongwon;Lee, Sung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.395-402
    • /
    • 2015
  • The suspension plasma spray (SPS) technique has been used to obtain dense $Y_2O_3$ coatings and to overcome the drawbacks of the conventional air plasma spray (APS). SPS uses suspensions containing micrometer or sub-micrometer sized powders dispersed in liquid media. In this study, microstructure developments and mechanical properties have been investigated as functions of particle size of source material and plasma processing parameters such as plasma power and stand-off distance. The microstructure of the coating was found to be highly related to the particle size and the plasma processing parameters, and it was directly reflected in the hardness and the adhesion strength. When fine powder (BET $16.4m^2/g$) was used as a raw material in the suspension, there was, with increasing stand-off distance, a change from a dense structure with a slightly bumpy surface to a porous structure with a cauliflower-like surface. On the other hand, when a coarse powder (BET $2.8m^2/g$) was used, the coating density was lower, with microscopic splats on the surface. Using fine $Y_2O_3$ powders, the coating layer with an optimum short stand-off distance showed a high hardness of approximately 90% of that of sintered $Y_2O_3$ and an adhesion strength several times higher than that of the coating by conventional APS.

Effect of Ceramic Fibers and SiC Opacifiers on Thermal Conductivities of Fumed Silica-Based Thermal Insulation Media (탄화규소 불투명화재와 세라믹섬유가 Fumed 실리카 단열재의 열전도도에 미치는 영향)

  • Kwon, Young-Pil;Kwon, Hyuk-Chon;Park, Sung;Lee, Jae-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.747-750
    • /
    • 2007
  • The thermal conductivities of nano-sized fumed silica-based insulation media were investigated by varying a mean particle size of the silicon carbide opacifiers and ceramic fiber content. Opacifying effect of ceramic fiber and silicon carbide powders was discussed in terms of their content and the mean particle size of them. As the fiber contents increased from 10 wt% to 30 wt% in a material, its thermal conductivity at temperatures of about $620^{\circ}C$ decreased from 0.171 $Wm^{-1}K^{-1}$ to 0.121 $Wm^{-1}K^{-1}$. Meanwhile, the thermal conductivity at temperatures of about $625^{\circ}C$ decreased from 0.128 $Wm^{-1}K^{-1}$ to 0.092 $Wm^{-l}K^{-1}$ as the mean SiC particle size decreased from $31{\mu}m$ to $10{\mu}m$.

The Effect of Particle Size Distribution on the Physical and Optical Properties of Cenosphere (세노스피어(Cenosphere)의 입도 분포에 따른 물리적 특성 및 광학적 특성 평가)

  • Lee, Won-Jun;Hwang, Hae-Jin;Han, Kyu-Sung;Hwnag, Kwang-Taek;Cho, Woo-Suk;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.27 no.7
    • /
    • pp.353-358
    • /
    • 2017
  • Recycled cenosphere, which is a hollow shaped particle from fly ash, has become attractive as a building material due to its light weight and excellent heat insulation and soundproof properties. In this paper, we investigated the effect of cenosphere size on the physical and optical properties. High brightness of cenosphere as raw material is required for a wide range of ceramics applications, particularly in fields of building materials and industrial ceramic tiles. Cenospheres were sorted by particle size; the microstructure was analyzed according to the cenosphere size distribution. Cenospheres were generally composed of quartz, mullite, and amorphous phase. Colour measurement corresponding to chemical composition revealed that the contents of iron oxide and carbon in the cenospheres were the major factors determining the brightness of the cenospheres.

Effect of surface treatment and luting agent type on shear bond strength of titanium to ceramic materials

  • Karaokutan, Isil;Ozel, Gulsum Sayin
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.2
    • /
    • pp.78-87
    • /
    • 2022
  • PURPOSE. This study aimed to compare the effect of different surface treatments and luting agent types on the shear bond strength of two ceramics to commercially pure titanium (Cp Ti). MATERIALS AND METHODS. A total of 160 Cp Ti specimens were divided into 4 subgroups (n = 40) according to surface treatments received (control, 50 ㎛ airborne-particle abrasion, 110 ㎛ airborne-particle abrasion, and tribochemical coating). The cementation surfaces of titanium and all-ceramic specimens were treated with a universal primer. Two cubic all-ceramic discs (lithium disilicate ceramic (LDC) and zirconia-reinforced lithium silicate ceramic (ZLC)) were cemented to titanium using two types of resin-based luting agents: self-cure and dual-cure (n = 10). After cementation, all specimens were subjected to 5000 cycles of thermal aging. A shear bond strength (SBS) test was conducted, and the failure mode was determined using a scanning electron microscope. Data were analyzed using three-way ANOVA, and the Tukey-HSD test was used for post hoc comparisons (P < .05). RESULTS. Significant differences were found among the groups based on surface treatment, resin-based luting agent, and ceramic type (P < .05). Among the surface treatments, 50 ㎛ air-abrasion showed the highest SBS, while the control group showed the lowest. SBS was higher for dual-cure resin-based luting agent than self-cure luting agent. ZLC showed better SBS values than LDC. CONCLUSION. The cementation of ZLC with dual-cure resin-based luting agent showed better bonding effectiveness to commercially pure titanium treated with 50 ㎛ airborne-particle abrasion.

Initial Particle Size Effects on Sintering and Dielectric Properties of $Pb>(Fe_1/2Nb_1/2)O_3$ (초기입자크기가 $Pb>(Fe_1/2Nb_1/2)O_3$의 소결 및 유전성에 미치는 영향)

  • 박경봉;김태희;윤기현
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.9
    • /
    • pp.711-718
    • /
    • 1992
  • Pb(Fe1/2Nb1/2)O3 was prepared by the molten salt synthesis method using an equimolar mixture of NaCl-KCl. Initial particle size could be controlled by varying the weight ratio of the NaCl-KCl to raw materials from 0.1 to 1.0, and the initial particle size effects on the sintering and dielectric properties of Pb(Fe1/2Nb1/2)O3 were investigated at the sintering temperature range from 90$0^{\circ}C$ to 105$0^{\circ}C$. As the weight ratio of salt increased, the average particle size decreased and the particle size distributions tended to narrow. As the initial particle size decreased, the linear shrinkage and density increased due to the promotion of densification. Dielectric constant increased with decreasing the initial particle size resulting from the increase of density and grain size.

  • PDF

Fabrication of Doped BaTiO3 by Coprecipitation Method (공침법에 의한 반도성 BaTiO3 제조)

  • 안영필;김복희;이태석
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.4
    • /
    • pp.315-320
    • /
    • 1988
  • The Nb doped BaTiO3 was synthesized by coprecipitation method using H2O2 media in region from pH 8 to pH 11. The powder prepared by using this method was crystallized at about 20$0^{\circ}C$ and average particle size was controlled by heat treatment. Because of preparation having fine particle and relatively narrow particle size distribution, high performance PTC device was made of these precipitated powders.

  • PDF

Preparation of particle-size-controlled SiC powder for single-crystal growth

  • Jung, Eunjin;Lee, Myung Hyun;Kwon, Yong Jin;Choi, Doo Jin;Kang, Seung Min;Kim, Younghee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.1
    • /
    • pp.57-63
    • /
    • 2017
  • High-purity ${\beta}-SiC$ powders for SiC single-crystal growth were synthesized by direct carbonization. The use of high-purity raw materials to improve the quality of a SiC single crystal is important. To grow SiC single crystals by the PVT method, both the particle size and the packing density of the SiC powder are crucial factors that determine the sublimation rate. In this study, we tried to produce high-purity ${\beta}-SiC$ powder with large particle sizes and containing low silicon by introducing a milling step during the direct carbonization process. Controlled heating improved the purity of the ${\beta}-SiC$ powders to more than 99 % and increased the particle size to as much as ${\sim}100{\mu}m$. The ${\beta}-SiC$ powders were characterized by SEM, XRD, PSA, and chemical analysis to assess their purity. Then, we conducted single-crystal growth experiments, and the grown 4H-SiC crystals showed high structural perfection with a FWHM of about 25-48 arcsec.

The Quality Investigation of 6H-SiC Crystals Grown by a Conventional PVT Method with Various SiC Powders

  • Yeo, Im-Gyu;Lee, Tae-Woo;Lee, Won-Jae;Shin, Byoung-Chul;Choi, Jung-Woo;Ku, Kap-Ryeol;Kim, Young-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.2
    • /
    • pp.61-64
    • /
    • 2010
  • In this paper, we investigate the quality difference of SiC crystals grown by a conventional physical vapor transport method using various SiC powders. While the growth rate was revealed to be dependent upon the particle size of the SiC powder, the growth rate of SiC bulk crystals grown using SiC powder with a smaller particle size (20 nm) was definitely higher than those using lager particle sizes with $0.1-0.2\;{\mu}m$ and $1-10\;{\mu}m$, respectively. All grown 2 inch SiC single crystals were proven to be the polytype of 6H-SiC and the carrier concentration levels of about $10^{17}\;cm^3$ were determined from Hall measurements. It was revealed that the particle size and process method of SiC powder played an important role in obtaining a good quality, high growth rate, and to reduce growth temperature.