• Title/Summary/Keyword: Ceramic matrix

Search Result 527, Processing Time 0.029 seconds

$Al_2O_3$$Al_2O_3$ -$SiC_w$ 복합재료의 동적 및 정적 파괴인성에 관한 연구 (Dynamic and Quasi-Static Fracture Toughness of $Al_2O_3$ and $Al_2O_3$ Ceramic Matrix Composite Reinforced with Sic Whiskers)

  • 조경목;이성학;표성규;장영원
    • 한국세라믹학회지
    • /
    • 제27권4호
    • /
    • pp.457-464
    • /
    • 1990
  • This paper presents the influence of the loading rate on the room temperature fracture toughness of a brittle Al2O3 and a SiC whisker reinforced Al2O3 composite. Dynamic fracture toughness tests were conduced using compressive fatigue pre-cracked notched round bars loaded in tension to produce a stress intensity rate K1=106 MPa√m/sec. The experimental results show that for each loading rate the fracture toughness values obtained for the ceramic matrix composite are higher than the corresponding values for the single phase alumina. In addition, both the reinforced and unreinforced ceramic are singnificantly tougher under dynamic loading than static loading. This dynamic and quasi-static fracture initiation behaviro can be interpreted by identifying quantitatively the mode of fractuer initiation as a function of loading rate.

  • PDF

폴리카보실란으로부터 제조된 탄화규소 중공사의 미세구조제어 (Nano-Structure Control of SiC Hollow Fiber Prepared from Polycarbosilane)

  • 신동근;공은배;조광연;권우택;김영희;김수룡;홍준성;류도형
    • 한국세라믹학회지
    • /
    • 제50권4호
    • /
    • pp.301-307
    • /
    • 2013
  • SiC hollow fiber was fabricated by curing, dissolution and sintering of Al-PCS fiber, which was melt spun the polyaluminocarbosilane. Al-PCS fiber was thermally oxidized and dissolved in toluene to remove the unoxidized area, the core of the cured fiber. The wall thickness ($t_{wall}$) of Al-PCS fiber was monotonically increased with an increasing oxidation curing time. The Al-PCS hollow fiber was heat-treated at the temperature between 1200 and $2000^{\circ}C$ to make a SiC hollow fibers having porous structure on the fiber wall. The pore size of the fiber wall was increased with the sintering temperature due to the decomposition of the amorphous $SiC_xO_y$ matrix and the growth of ${\beta}$-SiC in the matrix. At $1400^{\circ}C$, a nano porous wall with a high specific surface area was obtained. However, nano pores grew with the grain growth after the thermal decomposition of the amorphous matrix. This type of SiC hollow fibers are expected to be used as a substrate for a gas separation membrane.

Tensile Characterization of Ceramic Matrix Composites (CMCs) with Nondestructive Evaluation (NDE) Techniques

  • Kim, Jeongguk;Lee, Joon-Hyun
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.190-194
    • /
    • 2003
  • Two different types of nondestructive evaluation (NDE) techniques were employed to investigate the tensile behavior of ceramic matrix composites (CMCs). Two NDE methods, ultrasonic testing (UT) and infrared (IR) thermography, were used to assess defects and/or damage evolution before and during mechanical testing. Prior to tensile testing, a UTC-scan and a xenon flash method were performed to obtain initial defect information in light of UT C-scans and thermal diffusivity maps, respectively. An IR camera was used for in-situ monitoring of progressive damages. The IR camera measured temperature changes during tensile testing. This paper has presented the feasibility of using NDE techniques to interpret structural performance of CMCs.

  • PDF

Structure and Properties of EN AC AlSi12 Alloy Reinforced by Ceramic Fibre and Particles

  • Dobrzanki, Leszek A.;Kremzer, Marek
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1078-1079
    • /
    • 2006
  • The paper presents the possibilities of obtaining new composite materials based on sintered porous ceramics with particles and fibre of $Al_2O_3$ infiltrated by aluminum alloy. The EN AC - AlSi12 alloy features the matrix material, whereas the RF50AX-301 preform, of Saffil Automotive, was used as the reinforcement. Examinations of ceramics preforms permeability were made. Metallographic examination of composite materials made on light microscope and in scanning electron microscope show that aluminum alloys fill micropores in the matrix. New composite materials show twice higher value of hardness in comparison with matrix. Results indicate that it is possible to infiltrate porous ceramic with liquid aluminum alloy to obtain new composite materials were advantageous properties of each component are connected.

  • PDF

La-$\beta$-Aluminate의 형성이 $\alpha$-Alumina의 기계적 성질에 미치는 영향 (Formation of La-$\beta$-Aluminate in $\alpha$-Alumina Matrix and Its Influence on Mechanical Properties)

  • 강석원;고재웅;김해두
    • 한국세라믹학회지
    • /
    • 제29권1호
    • /
    • pp.23-28
    • /
    • 1992
  • Alumina ceramics was reinforced by in-situ formation of La-${\beta}$-aluminate in ${\alpha}$-alumina matrix. The powder mixture of which composition is (100-12x)Al2O3+x(La2O3+11Al2O3) was prepared for the formation of La-${\beta}$-aluminate in ${\alpha}$-alumina matrix. The amount of La-${\beta}$-aluminate in the matrix was controlled by varing x which is number of moles. The dense composite was produced by sintering at 1600$^{\circ}C$ in air or hot-pressing at 1550$^{\circ}C$ under 30 MPa. Bending strength and fracture toughness were increased, resulting from the grain growth inhibition and the crack deflection and crack bridging mechanism when La-${\beta}$-aluminate was produced in ${\alpha}$-alumina matrix.

  • PDF

Mechanical Properties of Cf/SiC Composite Using a Combined Process of Chemical Vapor Infiltration and Precursor Infiltration Pyrolysis

  • Kim, Kyung-Mi;Hahn, Yoonsoo;Lee, Sung-Min;Choi, Kyoon;Lee, Jong-Heun
    • 한국세라믹학회지
    • /
    • 제55권4호
    • /
    • pp.392-399
    • /
    • 2018
  • $C_f/SiC$ composites were prepared via a process combining chemical vapor infiltration (CVI) and precursor infiltration pyrolysis (PIP), wherein silicon carbide matrices were infiltrated into 2.5D carbon preforms. The obtained composites exhibited porosities of 20 vol % and achieved strengths of 244 MPa in air at room temperature and 423 MPa at $1300^{\circ}C$ under an Ar atmosphere. Carbon fiber pull-out was rarely observed in the fractured surfaces, although intermediate layers of pyrolytic carbon of 150 nm thickness were deposited between the fiber and matrix. Fatigue fracture was observed after 1380 cycles under 45 MPa stress at $1000^{\circ}C$. The fractured samples were analyzed by transmission electron microscopy to observe the distributed phases.

세라믹, 금속 및 플라스틱 소재의 니켈 함유량 분석에 관한 연구 (Analytical study on nickel content in ceramic, metal and plastic materials)

  • 최철호
    • 분석과학
    • /
    • 제24권6호
    • /
    • pp.443-450
    • /
    • 2011
  • ICP-AES와 AAS를 이용하여 세라믹, 금속 및 플라스틱 소재에 함유된 니켈을 정량하기 위한 조건을 연구하였다. 니켈 정량을 위해 산분해하여 조제된 시험 용액을 직접 ICP-AES 또는 AAS로 분석할 때 철이나 크로뮴 등의 원소가 방해하므로, 니켈을 dimethylglyoxime으로 착화시키고 $CHCl_3$로 추출하여 방해원소로부터 분리한 후 $CHCl_3$을 제거하고 염산으로 용해하여 측정하였다. 니켈에 대한 측정 회수율이 우수하였고, 방해를 일으키는 매질원소를 효율적으로 제거할 수 있어 본 방법은 인증표준물질(BAM-376 및 PACS-2)에 대한 용매추출시험에서 matrix의 영향을 받지 않고 니겔을 정량할 수 있었다.

Mechanical Properties of 2-D Silica-Silica Continuous Fiber-reinforced Ceramic-matrix Composite Fabricated by Sol-Gel Infiltration

  • Kim, Ha-Neul;Kim, Dong-Jun;Kang, Eul-Son;Kim, Do-Kyung
    • 한국재료학회지
    • /
    • 제19권7호
    • /
    • pp.391-396
    • /
    • 2009
  • 2-dimensional silica-silica Continuous Fiber-reinforced Ceramic.matrix Composites (CFCCs) were fabricated by a sol-gel infilitration method that has a changing processing condition, such as the repetitions of infilitration. In order to investigate the relationship between the processing condition and the mechanical properties of composites, the mechanical properties of specimens were measured by means of a 4-point flexural strength test while the evidence of strength degradation were microstructurally characterized. There seemed to be a minimum density value that existed at which the delamination between the fabrics would not occur. In the case that the density of silica CFCCs exceeded 1.55 g/$cm^3$, the flexural strength also exceeded approximately 18 MPa at least. By applying the Minimum Solid Area (MSA) analysis of the porous structure, the correlation between the relative density and the mechanical properties of composites will be discussed.

고압 자전연소 소결법을 이용한 섬유강화 복합체의 제조 (Fabrication of Fiber-Reinforced Composites by High Pressure Self-Combustion Sintering Method)

  • 방환철;고철호;임동원;김봉섭;최태현;윤존도
    • 한국세라믹학회지
    • /
    • 제37권5호
    • /
    • pp.444-452
    • /
    • 2000
  • Dense composites of titanium matrix and Al2O3 matrix with reinforcements of carbon or titanium carbide fibers were successfully fabricated by high-pressure self-combustion sintering method or combustion reacton under 30 MPa of uniaxial pressure with an aid of external heating in vaccum. It was found that the fibers were uniformly distributed in the matrix, and aligned in a phase perpendicular to the pressure axis. As a moel ratio of Ti/C or reaction time increased, the density of Ti-matrix composite increased Micro pores around fibers could be removed by using clean carbon fibers without sizing agent on their surface. The evolution of carbide fibers from carbon fibers was observed. The composition of the various phases around fibers were analyzed.

  • PDF

인산형 연료전지(PAFC)용 전해질 매트릭스의 제조방법이 전극/매트릭스 계면특성에 미치는 영향 (Effect of Preparation Methods of a Matrix Retaining Electrolyte on the Characteristics of a Phosphoric Acid Fuel Cell)

  • 윤기현;최재열;장재혁;김창수
    • 한국세라믹학회지
    • /
    • 제34권12호
    • /
    • pp.1205-1212
    • /
    • 1997
  • The matrices which consisted of SiC whisker, PES(polyesterasulfone) as a binder, span 80(sorbitan monooleate) as a surfactant, TPP(triphenyl phosphate) as a plasticizer and dichloromethane as a solvent, have been prepared by the various methods such as tape casting, rolling, tape cast-coating and roll-coating method. The fuel cells of single stack type using these matrices are characterized by ac impedance spectroscopy and cyclic voltammetry technique. A fuel cell using a matrix prepared by the tape cast-coating method shows the best performance of 466.34 mA/$\textrm{cm}^2$ at 0.6V because it has the lowest polarization resistance at the interface between electrodes and a matrix due to the largest three phase contact region of gases, catalyst and electrolyte.

  • PDF