• Title/Summary/Keyword: Ceramic interconnect

Search Result 31, Processing Time 0.02 seconds

Characterization and Preparation of Ceramic Interconnect of SOFC by Thermal Plasma Spray Coating Process (열 플라스마 용사법에 의해 코팅된 고체산화물 연료전지용 세라믹 연결재 특성 연구)

  • Park, Kwang-Yeon;Lim, Tak-Hyoung;Lee, Seung-Bok;Park, Seok-Joo;Shin, Dong-Ryul;Song, Rak-Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.187-190
    • /
    • 2009
  • $LaCrO_3$ series are the most common candidate materials for a ceramic interconnect for SOFC and the thermal expansion coefficient of these matches very well with that of YSZ electrolyte. In this study, characteristics of the coated films on the anode-support, which were formed by using $La_{0.8}Ca_{0.2}CrO_3$, $La_{0.8}Sr_{0.2}CrO_3$, $La_{0.8}Ca_{0.2}Co_{0.1}Cr_{0.9}O_3$ for ceramic interconnet for SOFC, were investigated. All powders showed single perovskite phase and the precursors had spherical shapes of $2{\mu}m{\sim}30{\mu}m$. According to SEM analysis, coated film of LCC on pretreated anode-support was more thicker, whereas the coated film on untreated anode-support was densely formed. As the results of electrical conductivity of anode-support coated with the ceramic interconnects, LCCC exhibited the most excellent electrical conductivity of 0.15S/cm at $750^{\circ}C$.

  • PDF

Effects of Mesh Planes on Signal Integrity in Glass Ceramic Packages for High-Performance Servers

  • Choi, Jinwoo;Altabella Lazzi, Dulce M.;Becker, Wiren D.
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.2
    • /
    • pp.35-50
    • /
    • 2013
  • This paper discusses effects of mesh planes on signal integrity in high-speed glass ceramic packages. One of serious signal integrity issues in high-speed glass ceramic packages is high far-end (FE) noise coupling between signal interconnects. Based on signal integrity analysis, a methodology is presented for reducing far-end noise coupling between signal interconnects in high-speed glass ceramic modules. This methodology employing power/ground mesh planes with alternating spacing and a via-connected coplanar-type shield (VCS) structure is suggested to minimize far-end noise coupling between signal lines in high-speed glass ceramic packages. Optimized interconnect structure based on this methodology has demonstrated that the saturated far-end noise coupling of a typical interconnect structure in glass ceramic modules could be reduced significantly by 73.3 %.

Characterization and Preparation of $La_{0.8}Ca_{0.2}CrO_3$ Ceramic Interconnect Prepared by Thermal Plasma Spray Coating Process for SOFC (열 플라스마 용사법에 의해 코팅된 SOFC 용 세라믹 연결재인 $La_{0.8}Ca_{0.2}CrO_3$ 특성 연구)

  • Park, Kwang-Yeon;Lim, Tak-Hyoung;Lee, Seung-Bok;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.3
    • /
    • pp.201-206
    • /
    • 2010
  • In present work, $La_{0.8}Ca_{0.2}CrO_3$ (LCC) ceramic interconnect layer for SOFC was prepared by using thermal plasma spray coating process. The LCC powders were synthesized by Pechini method and calcined at the temperature of $1000^{\circ}C$. The prepared LCC powder was characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), particle counter, BET analysis, respectively. In addition, basic and essential properties of LCC layer coated by thermal plasma spray coating process such as the morphology of surface and cross section for coated layer, gas leak rate, and electrical conductivity were analyzed and discussed. Based on these experimental results, it can be concluded that the LCC layer coated by thermal plasma spray coating process can be suitable as a ceramic interconnect of SOFC operated at $800^{\circ}C$.

Lanthanum Nickelates with a Perovskite Structure as Protective Coatings on Metallic Interconnects for Solid Oxide Fuel Cells

  • Waluyo, Nurhadi S.;Park, Beom-Kyeong;Song, Rak-Hyun;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Lee, Jong-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.344-349
    • /
    • 2015
  • An interconnect is the key component of solid oxide fuel cells that electrically connects unit cells and separates fuel from oxidant in the adjoining cells. To improve their surface stability in high-temperature oxidizing environments, metallic interconnects are usually coated with conductive oxides. In this study, lanthanum nickelates ($LaNiO_3$) with a perovskite structure are synthesized and applied as protective coatings on a metallic interconnect (Crofer 22 APU). The partial substitution of Co, Cu, and Fe for Ni improves electrical conductivity as well as thermal expansion match with the Crofer interconnect. The protective perovskite layers are fabricated on the interconnects by a slurry coating process combined with optimized heat-treatment. The perovskite-coated interconnects show area-specific resistances as low as $16.5-37.5m{\Omega}{\cdot}cm^2$ at $800^{\circ}C$.

Ceramic Materials for Interconnects in Solid Oxide Fuel Cells - A Review (고체산화물 연료전지 연결재용 세라믹 소재)

  • Park, Beom-Kyeong;Song, Rak-Hyun;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Park, Chong-Ook;Lee, Jong-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.231-242
    • /
    • 2014
  • An interconnect in solid oxide fuel cells (SOFCs) electrically connects unit cells and separates fuel from oxidant in the adjoining cells. The interconnects can be divided broadly into two categories - ceramic and metallic interconnects. A thin and gastight ceramic layer is deposited onto a porous support, and metallic interconnects are coated with conductive ceramics to improve their surface stability. This paper provides a short review on ceramic materials for SOFC interconnects. After a brief discussion of the key requirements for interconnects, the article describes basic aspects of chromites and titanates with a perovskite structure for ceramic interconnects, followed by the introduction of dual-layer interconnects. Then, the paper presents protective coatings based on spinel-or perovskite-type oxides on metallic interconnects, which are capable of mitigating oxide scale growth and inhibiting Cr evaporation.

Property Analysis of Ceramic Interconnect Prepared by Thermal Plasma Spray Coating Method for SOFC (Thermal Plasma Spray Coating 법에 의해 코팅된 SOFC용 세라믹 연결재 특성 분석)

  • Park, Kwang-Yeon;Pi, Seuk-Hoon;Lee, Jong-Won;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.710-714
    • /
    • 2011
  • In present work, $La_{0.8}Ca_{0.2}CrO_{3}$(LCC), $La_{0.8}Sr_{0.2}CrO_{3}$(LSC) and $La_{0.8}Ca_{0.2}CrO_{0.9}Co_{0.1}O_{3}$(LCCC) ceramic interconnect layer for SOFC were prepared by using thermal plasma spray coating process. The LCC, LSC and LCCC powders were characterized by x-ray diffraction(XRD), scanning electron microscopy(SEM), particle counter and BET analysis. In addition, basic and essential properties such as the surface morphology, cross section, gas leak rate, and electrical conductivity of LCC, LSC, and LCCC layers coated by thermal plasma spray coating process were analyzed and discussed. Based on these experimental results, it can be concluded that the LCCC layer coated by thermal plasma spray coating process can be suitable as a ceramic interconnect of SOFC.