• Title/Summary/Keyword: Ceramic fracture

Search Result 835, Processing Time 0.025 seconds

Development of Intelligent Multiple Camera System for High-Speed Impact Experiment (고속충돌 시험용 지능형 다중 카메라 시스템 개발)

  • Chung, Dong Teak;Park, Chi Young;Jin, Doo Han;Kim, Tae Yeon;Lee, Joo Yeon;Rhee, Ihnseok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1093-1098
    • /
    • 2013
  • A single-crystal sapphire is used as a transparent bulletproof window material; however, few studies have investigated the dynamic behavior and fracture properties under high-speed impact. High-speed and high-resolution sequential images are required to study the interaction of the bullet with the brittle ceramic materials. In this study, a device is developed to capture the sequence of high-speed impact/penetration phenomena. This system consists of a speed measurement device, a microprocessor-based camera controller, and multiple CCD cameras. By using a linear array sensor, the speed-measuring device can measure a small (diameter: up to 1 2 mm) and fast (speed: up to Mach 3) bullet. Once a bullet is launched, it passes through the speed measurement device where its time and speed is recorded, and then, the camera controller computes the exact time of arrival to the target during flight. Then, it sends the trigger signal to the cameras and flashes with a specific delay to capture the impact images sequentially. It is almost impossible to capture high-speed images without the estimation of the time of arrival. We were able to capture high-speed images using the new system with precise accuracy.

Evaluation of shear bond strength between metal core fabricated by 3D printing and dental porcelain (3D printing으로 제작된 금속 코어와 치과용 도재 간의 전단결합강도 평가)

  • Jung, Jae-Kwan;Lee, Su-Ok;Kim, Ki-Baek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2585-2592
    • /
    • 2015
  • The purpose of this study was to evaluate the shear bond strength between metal core fabricated by 3D printing and dental porcelain. Thirty metal cores were fabricated(cast 15ea, 3D printing 15ea). The porcelain for each group was builded to the metal core. Sample was loaded to shear force(crosshead speed 1mm/min) in a universal material testing machine. The fracture samples were analyzed failure aspect. The means were statistical analyzed using by Mann-whitney test(${\alpha}=0.05$). The period of experimental(metal cores fabrication, dental porcelain build up, data analysis, statistical analysis, failure aspect analysis and others) for this study took six months. The $mean{\pm}SDs$ of shear bond strength was $50.14{\pm}1.60MPa$ for the cast group, and $54.36{\pm}3.18MPa$ for the 3D printing group(p=0.035). The failure aspect showed mixed failure. As a results, metal cores fabricated by 3D printing method were clinically acceptable range.

Shear bond strength and fracture patterns between Ormocer-based-resin and dentin (Ormocer-Based-Resin의 상아질에 대한 전단결합강도 및 파절 양상에 대한 연구)

  • Ahn, Shi-Hyun;Cho, In-Ho;Lim, Ju-Hwan;Lim, Heon-Song
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.18 no.4
    • /
    • pp.289-299
    • /
    • 2002
  • The bond strength is one of the most important factor in establishing long-term success of esthetic restorative dentistry. So, various restorative materials have been introduced to improve the esthetic and physical properties. Ormocer (organically modified ceramic) was developed as a result of such efforts. This study was performed to compare the shear bond strength of ormocer based adhesive with that of existing dentin adhesive. In this study $Admira^{(R)}$ and $Admira^{(R)}$ bond of the ormocer system are grouped together for ADM, Single $Bond^{(R)}$ which is an one-bottle adhesive and Z-250TM which is hybrid composite resin of BIS-GMA system for SIN, and $Definite^{(R)}$ of ormocer and Etch & $Prime^{(R)}$ 3.0 which is a self etching priming/ bonding agent for ETC. The results of this study were as follows. : (1) In the comparison of shear bond strength according to different adhesive system, shear bond strength was increased in the order of ETC group, SIN group, ADM group. There was no significant difference between ADM group and SIN group. However, there was a significant level of difference between ADM and ETC groups as well as SIN and ETC groups( p<0.05). (2) Examination by a scanning electron microscope showed a well established hybrid layer and resin tag in both ADM group and SIN group, while ETC group showed a minimal formation of the hybrid layer when compared with ADM and SIN groups. From the above results, it may be reasonable to start the clinical application of ormocer system, and it is recommended that ormocer system should be used along with an ormocer based adhesive because ormocer system showed the lower shear bond strength when it used with other existing self etching priming/bonding agent. The self etching priming/bonding agent showed relatively low shear bond strength, and it is considered that the further study should be needed.

Contact fatigue and strength degradation in dental ceramics (치아용 세라믹스에서의 접촉피로 및 강도저하)

  • 정연길;이수영;최성철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.5
    • /
    • pp.527-533
    • /
    • 1999
  • Hertzian indentation tests with spherical indenters in water were conducted to examine the contact fatigue in three dental ceramics, such as feldspathic porcelain, micaceous glass-ceramic (MGC) and glass-infiltrated alumina, which was used as dental restorations, and evaluated the effect of contact damage on strength. Initial damage was dependent of microstructure, showing cone cracks of brittle behavior in the feldspathic porcelain and deformation of quasi-plastic behavior in the MGC, with an intermediate case in the glass-infiltrated alumina. However, as increasing the number of cyclic loading (n=1~n =$10^6$)all materials showed an abrupt strength degradation, at which fracture was originated from damage in the contact fatigue. There were two strength degradation with increasing the number of cyclic loading in specific loads (200N, 500N, 1000N):first was from the cone cracks, and second was from the radial cracks created by cyclic loading. The radial cracks, once formed, led to rapid degradation in strength properties, Finally the material was failed at the high number of cyclic loading. Strength degradation with indentation load at fixed number of cyclic loading indicated that the feldspathic porcelain should be highly damage tolerant to the contact fatigue.

  • PDF

A SHEAR BOND STRENGTH OF RESIN CEMENT BONDED TO HUMAN UNCUT ENAMEL, CUT ENAMEL, AND DENTIN IN VITRO

  • Lee Jong-Yeop
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.319-324
    • /
    • 2003
  • Statement of problem. Adhesives in dentistry playa major role in the success of restorative treatments. In the treatment of all ceramic restoration it is needed to find the adequate bond strength between enamel and dentin. Purpose. The purpose of this study was to evaluate shear bond strength of resin cement bonded to extracted human uncut enamel, cut enamel, and dentin in vitro. Material and methods. Ten freshly extracted anterior teeth without any previous restorative treatments were chosen. The extracted teeth were embedded in PMMA cold acrylic in the shape of a cylinder, 25 mm in diameter by 25 mm in height. The bonding system used was as follow: Uni-Etch (32% phosphoric acid), One-Step adhesive, Duolink resin cement. The specimens were acid etched and rinsed with water. Two layers of One-Step adhesive were coated with a disposable brush on the uncut enamel. VIP curing light at $500mV/cm^2$ was used to cure the adhesive. For cut enamel shear bond test, the specimen used for uncut enamel was further reduced approximately $0.3{\sim}0.5mm$ using a laminate preparation diamond bur (0.3 mm in depth). The specimens were subsequently treated with 320-grit SiC paper followed by 600-grit SiC paper and cleaned with distilled water. The bonding procedure on the cut enamel was same as uncut enamel bonding procedure. For dentin bonding test, the specimen used for cut enamel was further reduced approximately $0.5mm{\sim}1.0mm$ using a laminate preparation diamond bur (0.5 mm in depth of diamond cutting). The amount of reduction was evaluated with the silicone mold. The specimens were subsequently treated with 320-grit SiC paper followed by 600-grit silicon carbon paper and cleaned in distilled water. The bonding procedure on the dentin was same as uncut enamel bonding procedure. All samples were mounted and secured on the Ultradent shear bond test sample holder, and Ultradent restricted shear bond testing device was used with Universal Instron machine until fracture. Analysis of variance (ANOVA) test was performed comparing the result at P<0.05. Multiple comparison (Tukey) was used to compare each groups. Result. The result showed that the mean value in shear bond strength of resin cement bonded to uncut enamel, cut enamel and dentin were 27.04 Mpa, 30.25 Mpa and 26.39 Mpa with respect. Conclusion. Within the limitation of this study, the mean value of the shear bond strength of cut enamel was higher than those of uncut enamel or dentin. However there existed no statistical differences between three different human dentition substrates due to increased adhesive characteristics.

AN EXPERIMENTAL STUDY OF THE EFFECT OF ALUMINA AND ZIRCONIA ON MECHANICAL PROPERTIES OF DENTAL CORE PORCELAIN (Alumina와 zirconia가 치과용 코아 도재의 물리적 성질에 미치는 영향에 관한 실험적 연구)

  • Shin Hyeon-Soo;Lee Sang-Jin;Lee Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.3
    • /
    • pp.317-349
    • /
    • 1993
  • This study investigated the effect of filler particle size and weight% on mechanical properties of dental core porcelain. In alumina, variation in particle size and weight% and in zirconia, variation in weight%, all specimens were tested three-point bending strength, transmittance, thermal expansion coefficient, porosity and shrinkage and observed with SEM and analysed with X-ray diffractometer. In order to develop shrink-free porcelain, after firing alumina only, glass wasinfiltrated. And aluminum was added to alumina with the expanding character of aluminum oxidize into alumina, and was followed by second firing of glass infiltration procedure. Then mechanical properties were observed. The results of this study were obtained as follows. 1. The bending strength of zirconia was higher than that of alumina, and $5{\mu}m$ alumina had highest strength in variation of particle size of alumina. Except for $5{\mu}m$ alumina, increased with weight%, bending strength increased up to 80% and decreased at 90%. In case of glass infiltration, bending strength was slight higher than 80% and 90% of $5{\mu}m$ alumina. 2. Transmittance increased with increase of shrinkage, decrease of porosity, and with increase of filler size and had no direct correlation with weight%. 3. Thermal expansion coefficient of alumina group was $7.42\sim8.64\times10^{-6}/^{\circ}C$ and that of zirconia group was $9.83\sim12.11\times10^{-6}/^{\circ}C$ and the latter was higher than the former. 4. In x-ray diffraction analysis, alumina group and zirconia group increased $Al_2O_3$ peak and $t-ZrO_2$ peak with increase of weight%. The second phase(cristobalite peak) was observed in zirconia 40% group. 5. Porosity of zirconia was lower than that of alumina and $5{\mu}m$ alumina group had many pores with SEM. In case of low filler content, fracture occurred in glass and high filler content, in glass and filler. In case of aluminum addition to alumina, small oxidised aluminum was observed. 6. Zirconia group had high shrinkage than alumina group, and mixed group of alumina group had high shrinkage. In case of glass infiltration, shrinkage decreased and aluminum addition to alumina group was almost shrink-free.

  • PDF

Full-mouth rehabilitation with implant-supported fixed dental prostheses for the edentulous maxilla and partially edentulous mandible: A case report (상악 완전 무치악 및 하악 부분 무치악 환자에서 임플란트 지지형 고정성 보철물을 이용한 전악 수복 증례 보고)

  • Kim, Tae-Hyung;Oh, Kyung-Chul;Moon, Hong-Seok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.4
    • /
    • pp.374-381
    • /
    • 2019
  • A conventional approach for the treatment of long-span edentulous areas is the use of removable dentures. However, placing implants in these areas results in superior functional outcomes by increasing the stability, support, and resistance of the prostheses and improving the masticatory efficiency. Treatment modalities utilizing implants can be further classified into either removable or fixed-type prostheses. Several factors such as the amount of alveolar bone resorption, inter-arch relationship, patient preferences, and socioeconomic status should be considered when determining the appropriate treatment approach. Monolithic zirconia has been considered a suitable material for implant-supported fixed dental prosthesis, because of the drastic improvement in its mechanical properties. It exhibits fewer incidences of fracture and chipping of the prostheses, and has greater bulk of material than metal-ceramic crowns and zirconia-veneered ceramics. Moreover, highly translucent monolithic zirconia is also available in the market, and its application is gradually increasing for anterior tooth rehabilitation. The present report describes a patient who underwent full-mouth rehabilitation with fixed dental prostheses (eight upper and three lower implant placements). All teeth, except bilateral mandibular canines and left mandibular first and second premolars, were extracted after the diagnosis of generalized chronic moderate-to-advanced periodontitis of the remaining teeth. The patient reported satisfactory esthetic and functional outcomes during the one-year follow-up visit.

Mechanical behavior and microstructural characterization of different zirconia polycrystals in different thicknesses

  • Arcila, Laura Viviana Calvache;Ramos, Nathalia de Carvalho;Campos, Tiago Moreira Bastos;Dapieve, Kiara Serafini;Valandro, Luiz Felipe;de Melo, Renata Marques;Bottino, Marco Antonio
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.6
    • /
    • pp.385-395
    • /
    • 2021
  • PURPOSE. To characterize the microstructure of three yttria partially stabilized zirconia ceramics and to compare their hardness, indentation fracture resistance (IFR), biaxial flexural strength (BFS), and fatigue flexural strength. MATERIALS AND METHODS. Disc-shaped specimens were obtained from 3Y-TZP (Vita YZ HT), 4Y-PSZ (Vita YZ ST) and 5Y-PSZ (Vita YZ XT), following the ISO 6872/2015 guidelines for BFS testing (final dimensions of 12 mm in diameter, 0.7 and 1.2 ± 0.1 mm in thicknesses). Energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses were performed, and mechanical properties were assessed by Vickers hardness, IFR, quasi-static BFS and fatigue tests. RESULTS. All ceramics showed similar chemical compositions, but mainly differed in the amount of yttria, which was higher as the amount of cubic phase in the diffractogram (5Y-PSZ > 4Y-PSZ > 3Y-TZP). The 4Y- and 5Y-PSZ specimens showed surface defects under SEM, while 3Y-TZP exhibited greater grain uniformity on the surface. 5Y-PSZ and 3Y-TZP presented the highest hardness values, while 3Y-TZP was higher than 4Y- and 5Y-PSZ with regard to the IFR. The 5Y-PSZ specimen (0.7 and 1.2 mm) showed the worst mechanical performance (fatigue BFS and cycles until failure), while 3Y-TZP and 4Y-PSZ presented statistically similar values, higher than 5Y-PSZ for both thicknesses (0.7 and 1.2 mm). Moreover, 3Y-TZP showed the highest (1.2 mm group) and the lowest (0.7 mm group) degradation percentage, and 5Y-PSZ had higher strength degradation than 4Y-PSZ group. CONCLUSION. Despite the microstructural differences, 4Y-PSZ and 3Y-TZP had similar fatigue behavior regardless of thickness. 5Y-PSZ had the lowest mechanical performance.

Development and Self-Healing Performance of Epoxy Based on Disulfide (이황화 결합을 기반으로 한 자가치유 에폭시 개발 및 자가치유 성능 평가)

  • Donghyeon Lee;Seong Baek Yang;Jong-Hyun Kim;Mantae Kim;Dong-Jun Kwon
    • Composites Research
    • /
    • v.37 no.4
    • /
    • pp.337-342
    • /
    • 2024
  • Thermosetting composite materials are applied in mobility and structural applications due to their high mechanical strength and thermal properties. Nevertheless, these materials are difficult to recycle or reprocess. Therefore, research is currently underway to introduce vitrimer as a solution to this challenge. In this study, to enable reprocessing and self-healing of structural epoxy, an epoxy containing disulfide bonds was synthesized and added. The addition of disulfide epoxy resulted in a decrease in tensile strength and Young's modulus, but an increase in tensile strain. Analysis of the fracture surface after tensile testing revealed that the addition of disulfide epoxy imparted characteristics of ductile materials. This is attributed to the structure of disulfide epoxy, which primarily involves alkyl chains and bond exchange occurring at the disulfide bonds. It was confirmed that the addition of disulfide epoxy enables self-healing through reprocessing. While reprocessing was not possible with disulfide epoxy content below 17 wt%, it was feasible up to four times with content above 0.25 wt%. This study is expected to contribute to extending the lifespan of structural composites and enhancing recycling possibilities through reprocessing.

Effects of chromium chloride addition on coloration and mechanical properties of 3Y-TZP (크롬염화물 첨가에 따른 지르코니아 색상 및 물리적 성질 변화에 관한 연구)

  • Oh, Gye-Jeong;Seo, Yoon-Jeong;Yun, Kwi-Dug;Lim, Hyun-Pil;Park, Sang-Won;Lee, Kyung-Ku;Lim, Tae-Kwan;Lee, Doh-Jae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.2
    • /
    • pp.120-127
    • /
    • 2011
  • Purpose: The purpose of this study was to examine the effects of chromium chloride addition on coloration, mechanical property and microstructure of 3Y-TZP. Materials and methods: Chromium chloride was weighed as 0.06, 0.12, and 0.25 wt% and each measured amount was dissolved in alcohol. $ZrO_2$ powder was mixed with each of the individual slurry to prepare chromium doped zirconia specimen. The color, physical properties and microstructure were observed after the zirconia specimen were sintered at $1450^{\circ}C$. In order to evaluate the color, spectrophotometer was used to analyze the value of $L^*$, $C^*$, $a^*$ and $b^*$, after placing the specimen on a white plate, and measured according to the International Commission on Illumination (CIE) standard, Illuminant D65 and SCE system. The density was measured in the Archimedes method, while microstructures were evaluated by using the scanning electron microscopy (SEM) and XRD. Fracture toughness was calculated Vickers indentation method and indentation size was measured by using the optical microscope. The data were analyzed with 1-way ANOVA test (${\alpha}$ = 0.05). The Tukey multiple comparison test was used for post hocanalysis. Results: 1. Chromium chloride rendered zirconia a brownish color. While chromium chloride content was increased, the color of zirconia was changed from brownish to brownish-red. 2. Chromium chloride content was increased; density of the specimen was decreased. 3. More chromium chloride in the ratio showed increase size of grains. 4. But the addition of chromium chloride did not affect the crystal phase of zirconia, and all specimens showed tetragonal phase. 5. The chromium chloride in zirconia did not showed statistically significant difference in fracture toughness, but addition of 0.25 wt% showed a statistically significant difference (P<.05). Conclusion: Based on the above results, this study suggests that chromium chlorides can make colored zirconia while adding in a liquid form. The new colored zirconia showed a slight difference in color to that of the natural tooth, nevertheless this material can be used as an all ceramic core material.