• Title/Summary/Keyword: Ceramic fracture

Search Result 835, Processing Time 0.027 seconds

Fracture Strength of All-Ceramic 3-Unit Fixed Partial Dentures Manufactured by CAD/CAM and Copy-Milling Systems (CAD/CAM 및 카피밀링 시스템을 이용하여 제작한 구치부 3-유닛 고정성 국소의치의 파절강도)

  • Kang, Hoo-Won;Kim, Hee-Jin;Kim, Jang-Ju;Ko, Myung-Won
    • Journal of Technologic Dentistry
    • /
    • v.34 no.2
    • /
    • pp.95-103
    • /
    • 2012
  • Purpose: Fracture strength of all-ceramic 3-unit fixed partial dentures manufactured by CAD/CAM and copy-milling systems were evaluated. Methods: Zirconia cores were made by milling the pre-sintered zirconia block by CAD/CAM or copy milling method followed by subsequent sintering. By building-up the corresponding porcelains on the core, all-ceramic bridges were fabricated, and those were evaluated in comparison with PFM fixed partial denture. Results: During the flexural test of the 3-unit PFM bridge, the porcelain started to chip or break at 507.28(${\pm}62.82$)kgf and the metal framework did not break until the maximum load level of 800kgf which was set in the testing instrument of this study. However, among all-ceramic restoration test groups, Everest(EV) group showed a peeling off or breakage of the porcelain from 365.64(${\pm}64.96$)kgf and the core was broken at 491.77(${\pm}55.62$)kgf. Those values of Zirkonzahn(ZR) were 431.03(${\pm}58.47$)kgf and 602.74(${\pm}48.44$)kgf, respectively. The break strength of the porcelain of PFM(PM) group was significantly higher than that of EV (p<0.05) group and there was no significant difference when comparing to that of ZR (p>0.05). ZR group showed higher break strength than that of EV group however there was no significant difference (p>0.05). The break strength of cores were in the increasing order of EV < ZR < PM (p<0.05). Conclusion: We could find that even though the PM group fractured at much higher value than all-ceramic cores, the breakage values of the porcelain of PM group with crack formation or delamination, which will be regarded as clinical failure, was significantly higher than that of EV group and not significantly higher than that of ZR group at p-values of 0.05. The break strength of ZR group was higher than that of EV group at an insignificant level(p>0.05).

Characteristics of bending strength and residual stress distribution on high thermal cycle of ceramic and metal joint (세라믹/금속접합재의 고온 열사이클에 따른 잔류응력분포 및 굽힘강도 특성)

  • Park, Young-Chul;Hue, Sun-Chul;Boo, Myoung-Hwan;Kim, Hyun-Su;Kang, Jae-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1541-1550
    • /
    • 1997
  • Since the ceramic/metal joint material is made at a high temperature, the residual stress develops when it is cooled from bonding temperature to room temperature due to remarkable difference of thermal expansion coefficient between ceramic and metal. As residual stress at ceramic/metal joints influences the strength of joints, it is important to estimate residual stress quantitatively. In this study, it is attempted to estimate joint residual stress of Si$_3$N$_4$STS304 joints quantitatively and to compare the strength of joints. The difference of residual stress is measured when repeated thermal cycl is loaded, under the conditions of the practical use of the ceramic/metal joint. The residual stress increases at 1 cycle of thermal load but decreases in 3 cycles to 10 cycles of thermal load. And 4-point bending test is performed to examine the influence of residual stress on fracture strength. As a result, it is known that the stress of joint decreases as the number of thermal cycle increases.

Studies of Valve Lifer for Automotive Heavy Duty Diesel Engine by Ceramic Materials II. Development of SiC Valve Lifter by Injection Molding Method (Ceramic 재질을 이용한 자동차용 대형 디젤엔진 Valve Lifter 연구 II. 사출성형에 의한 탄화규소질 Valve Lifter 개발)

  • 윤호욱;한인섭;임연수;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.2
    • /
    • pp.172-179
    • /
    • 1998
  • Valve lifter namely tappet is supported by lifter hole which is located upper side of camshaft in cylinder block transforms rotatic mvement of camshaft into linear movement and helps to open and shut the en-gine valve as an engine parts. The face of valve lifter which is continuously contacting with camshaft brings about abnormal wears such as unfair wear and early wear because it is severely loaded in the valve train system. These wears act as a defect like over-clearance and cause imperfect combustion of fuel during the valve lifting in the combustion chamber. Consequently this imperfect combustion makes the engine out-put decrease and has cause on air pollution. To prevent these wears therefore The valve lifter cast in me-tal developed into SiC ceramics valve lifter which has an excellence in wear and impact resistance As a results the optimum process conditions like injection condition mixture ratio and debonding process could be established. After sintering fine-sinered dual microstructure in which prior ${\alpha}$-SiC matches well with new SiC(${\beta}$-SiC) produced by reaction among the ${\alpha}$-SiC carbon and silicon was obtained. Based on the study it is verified that mechanical properties of SiC valve lifter are excellent in Vickers hardness 1100-1200 bending strength (300-350 Pa) fracture toughness(1.5-1.7 Mpa$.$m1/2) Through engine dynamo test-ing SiC valve lifter and metal valve lifter are examined and compared into abnormal phenomena such as early fracture unfair and early wear. It is hoped that this research will serve as an important springboard for the future study of heavy duty diesel engine parts developed by ceramics which has a good wear resis-tance relaibility and lightability.

  • PDF

The Influence of Bonding Strength and Interface Characteristics to Bonding Agent and Veneer Ceramics on Metal-Ceramic Prosthetics (결합재와 베니어세라믹이 금속-세라믹 보철물의 전단결합강도와 계면특성에 미치는 영향)

  • Kim, Min-Jung;Choi, Sung-Min;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.33 no.4
    • /
    • pp.349-357
    • /
    • 2011
  • Purpose: In this study, for the reasons of observing the changes when using bonding agent with Ni-Cr alloy and Co-Cr alloy and using VM13 and Vintage MP ceramic which have the disparity in coefficient of thermal expansion, it is carried out to evaluate the characteristics of the bonding agent through the analysis of the interface between metal and ceramic and the analysis of bond strength by variable. Methods: The surface treatment was performed on the two kinds of alloy(Ni-Cr alloy and Co-Cr alloy) specimens, which were sandblasted and were treated with bonder application. The metal-ceramic interfaces were analyzed with EPMA in order to ionic diffusion, and the shear test was performed. Results: As a result of observation of metal-ceramic interfacial properties, it was observed that Cr atoms were spread from the alloy body to the ceramic floor in the specimen of Group B. It was also seen that Cr, W atoms were spread from the alloy body to the ceramic floor in the specimen of Group S. In consequence of observing Shear bond strength, it was calculated that the specimen of BSV was 27.75(${\pm}11.21$)MPa, BSM was 27.02(${\pm}5.23$)MPa, BCV was 30.20(${\pm}5.99$)MPa, BCM was 27.94(${\pm}10.76$)MPa, SSV was 20.83(${\pm}2.58$)MPa, SSM was 23.98(${\pm}3.94$)MPa, SCV was 32.32(${\pm}4.68$)MPa, and SCM was 34.54(${\pm}10.63$)MPa. Conclusion: In the metal-ceramic interface of Bellabond plus sample group, diffusion of Cr atoms was incurred and diffusion of C Cr atoms and W atoms in the sample group of $Starloy{(R)}\;C$ was observed. Using bonding agent showed the higher bond strength than using the sand blasting treatment. In the Bellabond plus alloys, the specimen group with the use of binding materials showed higher shear bond strength, but didn't show statistically significant differences (p>0.05). In the $Starloy{(R)}\;C$ alloys, the specimen group with the use of binding materials showed higher shear bond strength and statistically significant differences(p<0.05). In terms of VM13 ceramic, it was in the Bellabond plus alloys that the high shear bond strength was showed, but there's no statistically significant differences(p>0.05). In terms of Vintage MP ceramic, it was in the $Starloy{(R)}\;C$ alloys that the high shear bond strength was showed and statistically significant differences(p<0.05). Metal-ceramic to fracture of the shear strength measurements and an analysis of all aspects of military usage fracture of the composite, respectively.

Effect of Ar+ Ion Irradiation of Polymeric Fiber on Interface and Mechanical Properties of Cementitious Composites

  • Seong, Jin-Wook;Lee, Seung-Hun;Kim, Ki-Hwan;Beag, Young-Whoan;Koh, Seok-Keun;Yoon, Ki-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.6
    • /
    • pp.430-434
    • /
    • 2004
  • The values of fracture energy and mechanical flexural strength of Fiber Reinforced Cement (FRC) with polypropylene (PP) fiber modified by Ion Assisted Reaction (JAR), by which functional groups were grafted on the surface of PP fiber, was improved about 2 times as those of fracture energy and flexural strength of cement reinforced by untreated PP fiber. PP fiber was irradiated in O$_2$ environment by Ar$\^$+/ ion. The contact angle of PP treated by IAR decreased largely when compared with untreated PP. From this result, we expected that surface energy and interfacial adhesion force of treated PP fiber increased. The strain hardening occurred in the strain-stress curve of FRC including PP treated by IAR when compared with that of FRC with untreated PP. These enhanced mechanical properties might be due to strong interaction between hydrophilic group on modified PP fiber and hydroxyl group in cement matrix. This hydrophilic group on surface modified PP fiber was confirmed by XPS analysis. We clearly observed hydration products that were fixed at modified PP fiber due to the strong adhesion force of interface in cement reinforced modified PP by SEM (Scanning Electron Microscopy) study.

Repair bond strength of resin composite to bilayer dental ceramics

  • Ataol, Ayse Seda;Ergun, Gulfem
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.2
    • /
    • pp.101-112
    • /
    • 2018
  • PURPOSE. The purpose of this study was to investigate the effect of various surface treatments (ST) on the shear bond strength of resin composite to three bilayer dental ceramics made by CAD/CAM and two veneering ceramics. MATERIALS AND METHODS. Three different bilayer dental ceramics and two different veneering ceramics were used (Group A: IPS e.max CAD+IPS e.max Ceram; Group B: IPS e.max ZirCAD+IPS e.max Ceram, Group C: Vita Suprinity+Vita VM11; Group D: IPS e.max Ceram; Group E: Vita VM11). All groups were divided into eight subgroups according to the ST. Then, all test specimens were repaired with a nano hybrid resin composite. Half of the test specimens were subjected to thermocycling procedure and the other half was stored in distilled water at $37^{\circ}C$. Shear bond strength tests for all test specimens were carried out with a universal testing machine. RESULTS. There were statistically significant differences among the tested surface treatments within the all tested fracture types (P<.005). HF etching showed higher bond strength values in Groups A, C, D, and E than the other tested ST. However, bonding durability of all the surface-treated groups were similar after thermocycling (P>.00125). CONCLUSION. This study revealed that HF etching for glass ceramics and sandblasting for zirconia ceramics were adequate for repair of all ceramic restorations. The effect of ceramic type exposed on the fracture area was not significant on the repair bond strength of resin composites to different ceramic types.

The Properties of $\beta-SiC-ZrB_2$ Electroconductive Ceramic Composites with $Al_2O_3+Y_2O_3$Contents ($Al_2O_3+Y_2O_3 첨가량에 따른 {\beta}-SiC-ZrB_2$계 전도성 복합체의 특성)

  • Shin, Yong-Deok;Ju, Jin-Young;Hwang, Chul
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.9
    • /
    • pp.516-522
    • /
    • 2000
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta-SiC-ZrB_2$ electroconductive ceramic composites were investigated as a function of the liquid forming additives of$Al_2O_3+Y_2O_3$ Phase analysis of composites by XRD revealed $\alpha-SiC(6H) ZrB_2\; and YAG(Al_5Y_3O_{12})$ The relative density of composites were increased with increased Al2O3+Y2O3 contents. The Flexural strength showed the highest value of 390.6MPa for composites added with 20wt% Al2O3+Y2O3 additives at room temperature. Owing to crack deflection crack bridging phase transition and YAG of fracture toughness mechanism the fracture toughness showed the highest value of 6.3MPa.m1/2 for composites added with 24wt% Al2O3+Y2O3 additives at room temperature. The resistance temperature coefficient showed the value of$ 2.46\times10^{-3}\;, 2.47\times10^{-3},\; 2.52\times10^{-3}/^{\circ}C$ for composite added with 16, 20, 24wt% Al2O3+Y2O3 additives respectively. The electrical resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature range of $256{\circ}C\; to\; 900^{\circ}C$.

  • PDF

The Properties of $\beta-SiC-TiB_2$ Electroconductive Ceramic Composites Densified by Liquid-Phase Sintering (액장 소결한 $\beta-SiC-TiB_2$계 전도성 복합체의 특성)

  • Yim, Seung-Hyuk;Shin, Yong-Deok;Song, Joon-Tae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.9
    • /
    • pp.510-515
    • /
    • 2000
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta-SiC-TiB_2$ electroconductive ceramic composites were investigated as a function of the liquid forming additives of Al_2O_3+Y_2O_34. The result of phase analysis of composites by XRD revealed $\alpha-SIC(6H)\;TiB_2,\; and YAG(Al5Y3O12) crystal phase. The relative density and the mechanical properties of composites were increased with increasing $Al_2O_3+Y_2O_34 contents because YAG of reaction between $Al_2O_3\; and\; Y_2O_3$ was increased. The Flexural strength showed the highest value of 432.5MPa for composites added with 12wt% $Al_2O_3+Y_2O_34 additives at room temperature. Owing to crack deflection crack bridging phase transition and TAG of fracture toughness mechanism the fracture toughness showed 7.1MPa.m1/2 for composites added with 12wt% $Al_2O_3+Y_2O_34 additives at room temperature. The electrical resistivity and the resistance temperature coefficient showed the lowest of $6.0\times10-4\Omega.cm\; and\; 3.1\times10-3/^{\circ}C4 respectively for composite added with 12wt% \Omega additives at room temperature. The electrical resistivity of the composites was all positive temperature coefficient resistance (PTCR) in the temperature range of $25^{\circ}C\; to\; 700^{\circ}C$.

  • PDF

Asperities on the Surface of Plate-like Alumina and their Effect on Nacre-inspired Alumina-PMMA Composites

  • Kim, Bo-Yeon;Lee, Yoonjoo;Kim, Soo-Ryong;Shin, Dong-Geun;Kwon, Woo-Teck;Choi, Duck-Kyun;Kim, Younghee
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.248-252
    • /
    • 2015
  • Natural materials often have unique mechanical properties, such as the hierarchical structure of nacre formed through mineral bridges or asperities created between an inorganic particle and a natural-layer surface. As these asperities produce an exceptional shear resistance, in this study, we aimed to emulate the natural structure of nacre by synthesizing inorganic asperities and mineral bridges with different temperatures in the range of $1100-1300^{\circ}C$ and clay contents from 10 - 50 wt%. Following the infiltration of methyl methacrylate, we measured the mechanical properties to assess whether they were improved by the asperities. It was confirmed that the asperities improved the bending strength by 10%, and the anchoring effect was observed on the fracture surface.

Mechanical safety evaluation of ceramic ball head for total hip replacement using finite element method (인공고관절 전치환술에서 세라믹 볼 헤드의 기계적 안정성 평가를 위한 유한요소 해석)

  • Han, Sung-Min;Chu, Jun-Uk;Chun, Heoung-Jae;Kim, Jung-Sung;Choi, Kui-Won;Youn, In-Chan
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.6
    • /
    • pp.449-455
    • /
    • 2010
  • A ceramic articulating system in total hip replacement thought to be superior to metal-on-polyethylene due to its extremely low coefficient of friction and potential for high resistance to wear. But ceramic is brittle, which makes it mechanically and theoretically susceptible to fracture under certain mechanical conditions. In the current study, nine different models of ceramic ball heads were mechanically evaluated using 3D finite element(FE) analyses. It was found that the maximum stress in all ceramic models was lower than ceramic flexural strength, and it satisfied the requirements of the FDA Gaudience for artificial hip implant. Thus, ceramic ball head models introduced in the current study could be mechanically safe for clinical applications.