• Title/Summary/Keyword: Ceramic fracture

Search Result 832, Processing Time 0.022 seconds

Fracture Characteristics of Cutting Tools in Machining of Hardened Alloy Steel (열처리한 합금공구강의 절삭에서 공구파손의 특성)

  • Noh, S.L.;An, S.O.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.3
    • /
    • pp.199-205
    • /
    • 1994
  • The fracture characteristics and tool life of ceramics and WC, CBN cutting tool when turning heat treated steel STD11($H_RC$ 60) were investigated experimentally to clarify the machinability and optimum tool materials in cutting of difficult-to-cut material with high hardness. Forthermore, the behaviors of the tool wear and failure were examined with regard to cutting force. The hardened steel wore the cutting tool edge rapidily and increased the cutting forces, especially radial force. The tool was worn by the abrasive action. Flank Weat of $Al_2O_3-TiC$ ceramic and WC tool become relatively large and CBN & $Al_2O_3$, ceramic tool had a long life among the tool materials tested. The tool fracture patterns were just like minor cutting wear, flank wear, crater wear, notch wear, chipping. Flank wear rate was accelerated by occurrence of chipping. During the proceeding of machining, it was possible to foresee the catastrophic fracture of tool by abrupt increase of radial force.

  • PDF

A Study on the Ceria Stabilized Tetragonal Zirconia Polycrystals(Ce-TZP)(II) : Mechanical Properties of Ce-TZP and its Fracture Behavior at Elevated Temperature (CeO2 안정화 정방정 Zirconia 다결정체(Ce-TZP)에 관한 연구(II) : Ce-TZP의 고온 기계적 성질과 파괴거동의 변화)

  • 강대석;김문일;박정현;문성환;백승수
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.6
    • /
    • pp.789-794
    • /
    • 1989
  • The high-temperature strength of Ce-TZP was measured at 200, 650 and 100$0^{\circ}C$ by 4-point bending test. And its fracture behavior was observed by SEM. Below $650^{\circ}C$ of the temperature, where monoclinic fraction was almost zero, the decreasing rate of bending strength was relatively slow, but above this temperature, high temperature strength was largely decreased as a result of the decrease of stress-induced transformation of zirconia. The observation of fracture surface bended at 100$0^{\circ}C$ indicated that the fracture mode changed from intergranular-into transgranular-form with regardless of ceria contents.

  • PDF

Biaxial Fracture Behavior of Alumina Ceramics ; Thickness Effect on Ball-on-3-ball Test (시편 두께에 따른 알루미나 세라믹스의 이축 파괴 거동)

  • 이홍림;박성은;이중현
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.7
    • /
    • pp.711-717
    • /
    • 1999
  • Biaxial fracture behavior of alumina specimens with the diameter of 20mm and four kinds of thickness of 1.9, 2.3, 2.6 and 2.8mm was studied by the ball-on-3-ball test and the fracture results were analyzed by he analysis of variance (ANOCA), The strength measured with the down speed prescribed in ASTM showed that the measured strength was not dependent on the thickness of the specimens. Equivalent radius and crack-braching number were observed to increase lineraly with the thickness of the specimens. The jog direction was observed to study the effect of grinding direction on surface flaws. It is though that the surface finishing with #600 grit diamond wheel did not affect the surface flaws of the specimens.

  • PDF

Mechanical Properties of ZTA Composites Fabricated by Reaction Bonding (반응결합에 의해 제조된 ZTA복합체의 기계적 특성)

  • 장복기;백용혁;문종하;이종호
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.6
    • /
    • pp.577-582
    • /
    • 1997
  • The mechanical properties of Al2O3-ZrO2 composites fabricated by RBAO(reaction bonded aluminium oxide) process were investigated. As the amount of ZrO2 increased the sinstered density of Al2O3-ZrO2 composites decreased slightly, but wear resistance was enhanced. Bending strength of Al2O3-ZrO2 composites increased in proportion to the amount of al in case of a fixed ZrO2 content. When the amount of Al was fixed bending strength reached its maximum value at 25 wt% ZrO2. The fracture toughness(K1c) increased with increasing content of ZrO2, but decreased with increasing Al amount. On the other hand, the fracture mode of Al2O3-ZrO2 composites was the mixed mode of inter-and transgranular fracture.

  • PDF

Microstructure and Mechanical Properties of Platelet Reinforced Mullite-Zirconia Composites (Platelet 강화 Mullite-Zirconia 복합체의 미세구조와 기계적 성질)

  • 박상엽
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.10
    • /
    • pp.757-764
    • /
    • 1992
  • The platelet reinforced mullite-zirconia composites were prepared by pressurelss sintering with addition of Al2O3 or SiC platelets. The sintered density of 10 vol% Al2O3 platelet reinforced mullite-zirconia composite was 98.3% at 1700$^{\circ}C$. The fracture strength (290 MPa) and fracture toughness (4.9 MPa$.${{{{ SQRT { m} }}) in the Al2O3 platelet reinforced mullite-zirconia composite were enhanced compared with those of mullite-zirconia due to the crack deflection and load transfer effect of platelets. Whereas, the SiC platelet reinforced mullite-zirconia composite sintered at 1650$^{\circ}C$ showed relatively lower density (95.7%), fracture strength (170 MPa), and fracture toughness (3.9 MPa$.${{{{ SQRT { m} }} than the Al2O3 platelet reinforced mullite-zirconia composite.

  • PDF

Fracture Behavior and Degradation of Piezoelectric Properties in PZT (PZT의 파괴거동 및 압전 열화특성)

  • 태원필;김송희;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.10
    • /
    • pp.806-814
    • /
    • 1992
  • The aim of this study was to investigate the change in compressive strength, freacture behavior and degradation of piezoelectric properties with compressive cyclic loading in Pb(Zr, Ti)O3 of tetragonal, morphotropic phase boundary and rhombohedral composition. The highest compressive strength was found in rhombohedral composition. After poling treatment the strength increased by 8.4% and 6.5% in tetragonal and morphotropic phase boundary compositions respectively while changed little in rhombohedral. The increase of compressive strength after poling treatment is believed to be due to the internal stress around grain boundary by domain alginment toward electric field direction in the microstructures having tetragonality and the occurrence of domain switching to the direction perpendicular to electrical field during fracture. Fracture mode relatively change from transgranular to intergranular was observed in the large grain sized tetragonal and morphotropic phase boundary compositions before and after poling but the transgranular fracture mode always remained in the rhombohedral composition. From the X-ray diffractometer analysis the domains parallel to the electric field direction is known to undergo rearrangement during the cyclic loading into random direction that is responsible for the degradation of piezoelectric property.

  • PDF

Effects of Dissolved Ca from Plaster Mold During Slip Casting on the Microstructure and Fracture Toughness of Sintered Alumina (석고 몰드에서 용출된 Ca이 주입성형 알루미나 소결체의 미세구조 및 파괴인성에 미치는 영향)

  • 박재관;임동기;김인태;김윤호
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.12
    • /
    • pp.1019-1025
    • /
    • 1991
  • The effect of dissolved Ca ion from plaster mold during slip casting on the microstructure and fracture toughness of high-purity sintered alumina were investigated. When the alumina slip containing 1000 ppm MgO was casted on a calcined alumina mold, the sintered compact had a homogeneous microstructure with equiaxed grains. However, when the same slip was casted on a plaster mold, the sintered compact consisted of the mixture of equiaxed and elongated grains. This inhomogeneous microstructure was also observed in the sintered alumina doped with 100o ppm MgO and 100 ppm CaO whose compact was prepared on the calcined alumina mold indicating that the inhomogeneity was caused by CaO. It was found that the specimen containing both MgO and CaO had higher fracture toughness than that containing MgO only. The enhanced fracture toughness by CaO is probably due to the crack deflection along the boundaries of the elongated grains.

  • PDF

Fracture Toughness Testing in Alumina (알루미나에서의 파괴인성 측정)

  • 윤경진;박성길;김종집;조성재
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.8
    • /
    • pp.651-659
    • /
    • 1992
  • Fracture toughness of alumina was determined by IF, IS, DT, SEPB methods, and the data were inter-compared. Round robin test on IF and IS methods was also conducted under the participitation of 4∼5 domestic institutes. Fracture toughness data determined by IF, IS, DT methods were similar, while those by SEPB method were smaller. Variation of toughness data determined by IS method using 98N of indentation load was significantly small compared to those determined by any other methods. Round robin test results showed that toughness data determined by IF method at various institutes do not coincide each other, while those by IS method do well coincide. Thus, it was concluded that inter-confidence on fracture toughness data, if determined by IS method at all institute, can be established between institutes.

  • PDF

Optimization of Kiln Process Parameters of Low-Temperature Sintering Lightweight Aggregate by Response Surface Analysis (반응표면분석법에 따른 저온소성 경량골재의 킬른공정변수 최적화)

  • Lee, Han-Baek;Seo, Chee-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.365-372
    • /
    • 2010
  • This paper was to evaluate the influence of kiln process parameter(kiln angle, kiln rotating speed) of lightweight aggregate using waste glass and bottom ash with industrial by-products on thermal conductivity, density, water absorption, fracture load and porosity by response surface analysis. In the results of surface plot and contour plot, it has verified that kiln residence time of lightweight aggregate increase as kiln angle and rotating speed decreases. For this reason, pore size and quantity tend to increase by active reaction of forming agent. It seems to be that increase in pore size and quantity have caused decreasing density, fracture load and thermal conductivity, and increasing water absorption. In conclusion, optimization of kiln process parameter on thermal conductivity, density, water absorption, fracture load and porosity by response surface analysis are kiln angle 2.4646%, kiln rotating speed 40.7089 rpm.

Microstructure and Cutting Characteristics of SiC-$Si_3N_4$ Ceramic Cutting Tool (SiC-$Si_3N_4$ 세라믹 절삭공구의 미세구조 및 절삭특성)

  • Gwon, Won-Tae;Kim, Yeong-Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.1944-1949
    • /
    • 2001
  • Four SiC-Si$_3$N$_4$ceramic cutting tools with different composition have been fabricated by hot-pressing. Correlations among the annealing time, the corresponding microstructure and the mechanical properties of resulting ceramics have been investigated. The fracture toughness and the grain size of both SiC and Si$_3$N$_4$in SiC-Si$_3$N$_4$composites increased with the annealing time. 1\`he hardness of SiC-Si$_3$N$_4$composites was relatively independent of the grain size and the sintered density. These ceramic cutting tools were tested under various cutting conditions and compared with the commercial Si$_3$N$_4$ceramic cutting tools. The experimental results were compared in terms of tool life and cutting force. The performance of SiC-Si$_3$N$_4$ceramic cutting tool shows the possibility to be a new ceramic tool.