• 제목/요약/키워드: Ceramic burner

검색결과 47건 처리시간 0.02초

서로 다른 물성치로 이루어진 다공 세라믹 연소기 속에서의 예혼합화염 연소에 대한 수치해석 연구 (Numerical Study of Premixed Combustion within a Porous Ceramic Burner of Different Ceramic Properties)

  • 임인권
    • 한국연소학회지
    • /
    • 제2권1호
    • /
    • pp.1-8
    • /
    • 1997
  • Premixed combustion within porous ceramic media is numerically studied to understand burning characteristics and to find best configurations for burner implementations. Among many parameters, critical to burner performance, flame location and extinction coefficient are selected as major parameters for this study. The flame structure and burner performance with respect to these two parameters are observed. In the study, it is found that the location of flame is the most important in porous burner operation since it affects the rate of heat transfer and flame structure. Stability of the flame within the porous ceramic burner is discussed with respect to the flame location. It is found that to obtain high radiative output, the flame should be located downstream section of the burner. But the flame is to be unstable at most of downstream section except near the exit plane. To overcome this problem, new porous ceramic burner, using different ceramic properties in one burner instead of single property ceramic, is made and tested. With a combination of ceramics of high extinction coefficient at upstream and another material of low extinction coefficient at downstream of the burner, the flame can be stabilized at wider region of the burner with higher radiative output compared to the original burner configuration.

  • PDF

다공 세라믹 연소기 속에서의 예혼합연소에 대한 민감도 해석의 적용 (Application of sensitivity analyses in premixed combustion within a porous ceramic burner)

  • 임인권
    • 대한기계학회논문집B
    • /
    • 제22권2호
    • /
    • pp.162-172
    • /
    • 1998
  • A numerical study of premixed combustion within a porous ceramic burner (PCB) is performed to understand flame behavior with respect to various model parameters. Basic flame structure within the porous ceramic burner and species profiles such as NO and CO are examined. Sensitivity analysis of flame speed, gas and solid temperature, NO and CO emission from the burner with respect to reaction steps and various physical properties of the ceramic material is applied to find the most significant parameters in selection of porous materials for the porous ceramic burner. Effects of thermal conductivity, extinction coefficient and scattering albedo on the burner characteristics are studied through the sensitivity analysis. The results of sensitivity study reveal the order of importance in ceramic material properties to get suitable burner performance. Scattering albedo, which governs the ratio of absorbed energy by the ceramic material to total radiative energy transferred, is one of the most important parameters in the material properties since it affects the actual absorbed radiation rate and thus it largely affects the flame structure. Through the study, it is found that the sensitivity study can be used to estimate the flame behavior within the porous ceramic burner more effectively.

다공 세라믹 버너 내부의 화염 거동에 관한 실험 (Experimental study on flame behavior within a porous ceramic burner)

  • 임인권;정석호
    • 대한기계학회논문집B
    • /
    • 제21권4호
    • /
    • pp.518-524
    • /
    • 1997
  • Experimental studies on combustion phenomena within a porous ceramic burner are reported. Main interest of the present work is to investigate fundamental flame behaviors and their effects on the burner operation. Due to high thermal capacity of the porous ceramic materials, the response of flame to burning condition changes is slow and thus to have a stabilized flame is quite difficult and takes much time. It is found that the temperature profile obtained at downstream of the flame zone is not much sensitive to the movement of flame and the speed of flame movement is less than 0.1 mm/sec for the conditions tested. With the premixed LPG/air flame imbedded within the porous ceramic burner, stable combustion regions and unstable combustion regions leading to blowoff or flashback phenomena are observed and mapped on flow velocity versus equivalence ratio diagram. For the development of burner operation technique which is more practical and safe, intermittent burning technique, where the fuel or/and air is supplied to the burner intermittently, is proposed as one of the flame control methods for the porous ceramic burner and tested in this study. Through the experiment, it is realized that the proposed method is acceptable in respect to burner performance and give much flexibility in the operation of porous ceramic burner.

복사 버너의 연소특성에 관한 실험적 연구 (An Experimental Study on Combustion Characteristics of Radiant Burner)

  • 위재혁;이대래;김영수;전충환
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.19-25
    • /
    • 2006
  • Energy efficient and low pollution combustion systems the use gaseous fuels have been in great demand in recent year. Radiant burner in many different forms are emerging as very desirable combustion systems for same reason. Porous radiant burners are used in drying, preheating and curing, and in other type of materials processing and manufacturing processes. However, little knowledge is available about the operating characteristics and the structure of flames in porous ceramic fiber radiant burners. The objective of the present work is to investigate the global performance characteristics of the ceramic fiber burner. A detailed study which includes the spectral intensity, gas temperature, radiation efficiency and global pollutant emissions. Another objective is to study the flame structure of the ceramic fiber burner by measuring the local gas temperature. The results indicate that ceramic fiber burner do offer a 19-44% gain in radiant efficiency. The ceramic fiber burner exhibit significant spectral intensity peaks in the band at $2.0-2.5{\mu}m$. The local temperature distribution inside the mat and near the mat surface as a function of the equivalence ratio can be reasonably interpreted by the relation of the heat balance in the mat and movement of the reaction zone. Nox emission from ceramic fiber burner is less than 25ppm throughout the operating range.

  • PDF

세라믹스의 축열연소시스템 응용 (Ceramic Application for Regenerative Burner System)

  • 한동빈;박병학;김영우;배원수
    • 한국세라믹학회지
    • /
    • 제36권5호
    • /
    • pp.497-503
    • /
    • 1999
  • Recently regenerative burner system was developed and begins to be gradually used for better energy savings. Compared to conventional burner system the regenrative one has the several merits such as higher fuel efficiency light weigh of apparatus low harmful toxic gas and homogeneous heating zone etc. The regenerative material a very important component of the new regenerative burner system should possess the properties of low specific density higher surface area and high specific heat capacity. Ceramics is the best regenerative material because of stable mechanical properties even at high temperature and better thermal properties and excellent chemical stability. In this study alumina ball alumina tube 3-D ceramic foam and hoeycomb as regenerative materials were tested and evaluated. The computer silumation was conducted and compared to the result of field test. This paper is aimed to introduce a new application of ceramics at high temperature.

  • PDF

다공세라믹 버너를 이용한 표면화염의 연소 및 배기특성 (Combustion and Emission Characteristics of the Surface Flames in Porous Ceramic Burner)

  • 황상순
    • 한국연소학회지
    • /
    • 제6권1호
    • /
    • pp.29-35
    • /
    • 2001
  • The surface flames in porous ceramic burner are experimentally characterized to investigate the effects of equivalence ratio and firing rates. The results show that the surface flames are classified into green, red radiant and blue surface flame as decrease of equivalence ratio. And each flame is maintained very stably and shows the same flame characteristics at any orientation of ceramic burner. Particularly the blue surface flame was found to be very stable at very lean equivalence ratio at 200 to $800\;kw/m^2$ firing rates. And the exhausted NOx was analysed to find out which flame has lower NOx emission. The blue surface flame showed the lowest NOx emission regardless of the location of burner since it sustained very stable at lean mixture ratio.

  • PDF

디젤 입자상물질 제거장치에 적용되는 버너의 설계 개념 및 기초 실험 (Conceptional Design and Basic Experiment of the Burner for the Particulate Trap System)

  • 박동선;김재업;이만복;김응서
    • 한국자동차공학회논문집
    • /
    • 제4권3호
    • /
    • pp.50-60
    • /
    • 1996
  • We designed and developed the burner which would be adapted on the burner type diesel particulate trap system. The burner type particulate trap system consists of burner system to regenerate to ceramic filter, ceramic filter canister, system controller and etc. Many design factors which affect the performance of the burner system were discussed. We also investigated burner characteristics according to the operating parameters. Burned gas temperature could be controlled better by the 2nd air flow rate than the 1st one. As the space velocity increases, the axial and radial temperature gradients in the filter decreases.

  • PDF

다공 세라믹 오일 연소기의 온도분포 및 CO, NOx 배출 특성에 관한 실험적 연구 (Experimental Study on the Temperature Distribution and CO, NOx Emission of Porous Ceramic Oil Burner)

  • 조제동;강재호;임인권
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.398-403
    • /
    • 2000
  • Experimental study on the porous ceramic burner for oil burning has been performed. Temperature profile of the combustor and CO and NOx emission have been obtained for with and without porous ceramic plate. It is found that very uniform and high temperature region with porous ceramic plate can be realized due to high radiation emission from the plate and also obtained lower CO and soot particulate emission, when compared to the conventional burner. When this burning method is applied to conventional boiler of small heating capacity, it is found that near 6 and 7 percent increase in thermal efficiency could be obtained without a proper calibration for optimization.

  • PDF

평판 예혼합 세라믹 버너의 분포판 변화에 따른 연소화염특성과 안정성 분석 (Combustion Characteristic and Stability of Flat Premixed Ceramic Burner with Different Porous Baffle Plates)

  • 이재영;이필형;박창수;박봉일;황상순
    • 한국연소학회지
    • /
    • 제14권4호
    • /
    • pp.7-16
    • /
    • 2009
  • Porous metal plates (Metal fiber, muti-hole metal plate) using mainly in surface burner are known to have a corrosion and durability problem under high temperature condition. In this study, premixed flat flame with perforated ceramic tile of more durable cordierite material was examined with respect to combustion stability and emission. The flat premixed ceramic burner consists of perforated ceramic tile and various type of baffle plates to form stable surface flame. The results show that most stable flat flame is generated using baffle plate with open ratio of 0.193. In downward flat flame mode which is widely used in condensing boiler, CO is measured below 50ppm from equivalence ratio 0.755 to 0.765 and $NO_X$ is measured below 12ppm from equivalence ratio 0.75 to 0.79. It is also found that the range of blue flame in flame stability curve becomes wider with increasing heat capacity.

  • PDF

Perforated Cordierite 재질 버너의 표면화염 연소특성 연구 (A Study on the Combustion Phenomena of Surface Flame in Perforated Cordierite Burner)

  • 양시원;황상순
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제29회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.187-194
    • /
    • 2004
  • The surface flames in porous ceramic burner are experimentally characterized to investigate the effects of equivalence ratio and firing rates. The results show that the surface flames are classified into green, red radiant and blue surface flame as the decrease of equivalence ratio. And each flame is maintained very stable and represents the same flame characteristics at any orientation of ceramic burner. Particularly the blue surface flame is found to be very stable at very lean equivalence ratio at 7000kcal/hr to 20000kcal/hr firing rates. And the exhausted NOx was analysed to find out which flame has lower NOx emission. The blue surface flame shows the lowest NOx emission regardless of the location of burner since it sustains very stable at lean mixture ratio.

  • PDF