• Title/Summary/Keyword: Ceramic Powder

Search Result 1,852, Processing Time 0.026 seconds

A Study of Ceramic Injection Molding of Watch Case Composed of $ZrO_2$ Powder

  • Kwak, T.S.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.505-506
    • /
    • 2006
  • This study is focused on the manufacturing technique of powder injection molding of watch case made from zirconia powder. A series of computer simulation processes were applied to the prediction of the flow pattern in the inside of the mould and defects as weld-line. The material properties of melted feedstock, including the PVT graph and thermal viscosity flowage properties were measured to obtain the input data to be used in a computer simulation. Also, a molding experiment was conducted and the results of the experiment showed a good agreement with the simulation results for flow pattern and weld line location. On the other hand, gravity and inertia effects have an influence on the velocity of the melt front because of the high density of ceramic powder particles during powder injection molding in comparison with polymer's injection molding process. In the experiment, the position of the melt front was compared with the upper gate and lower gate positions. The gravity and inertia effect could be confirmed in the experimental results.

  • PDF

Physical Properties of Lightweight Materials According to the Replacement Ratios of the Admixture (혼합재 치환율에 따른 경량소재의 물리적 특성)

  • Jung, Yon-Jo;Chu, Yong-Sik;Lee, Jong-Kyu;Song, Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.633-638
    • /
    • 2009
  • Lightweight materials were fabricated using glass abrasive sludge, bottom ash and slag powder in this study. This study tried to draw the correlation between physical properties and internal pore of lightweight material. The content of bottom ash and slag powder was from 10% to 50% and firing temperature from $760{^{\circ}C}\;to\;800{^{\circ}C}$ in rotary kiln. The lightweight material containing bottom ash or slag powder had a specific gravity of $0.21{\sim}0.70$ at particle size $2{\sim}4$ mm. Replacement ratio of the admixture increasing with specific gravity increased. Fracture strength of panel made with various lightweight materials was $32{\sim}55\;kgf/cm^2$ and flexural strength was $11{\sim}18\;kgf/cm^2$. Fracture strength increased by 72% and flexural strength was 63% compared with reference. Thermal conductivities of panel was $0.07{\sim}0.11W/m{\cdot}k$. The water absorption ratios of panel with lightweight materials containing bottom ash were $1.8{\sim}2.8$% and slag powder were $2.65{\sim}2.8$%. Excellent results on resistant of water absorption.

Synthesis of Silicon Carbide Nano-Powder from a Silicon-Organic Precursor by RF Inductive Thermal Plasma (RF 유도 열플라즈마를 이용한 유기 용매로 부터의 탄화규소 나노 분말 합성)

  • Ko, Sang-Min;Koo, Sang-Man;Kim, Jin-Ho;Cho, Woo-Seok;Hwang, Kwang-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.523-527
    • /
    • 2012
  • Silicon carbide (SiC) has recently drawn an enormous amount of industrial interest due to its useful mechanical properties, such as its thermal resistance, abrasion resistance and thermal conductivity at high temperatures. In this study, RF thermal plasma (PL-35 Induction Plasma, Tekna CO., Canada) was utilized for the synthesis of high-purity SiC powder from an organic precursor (hexamethyldisilazane, vinyltrimethoxysilane). It was found that the SiC powders obtained by the RF thermal plasma treatment included free carbon and amorphous silica ($SiO_2$). The SiC powders were further purified by a thermal treatment and a HF treatment, resulting in high-purity SiC nano-powder. The particle diameter of the synthesized SiC powder was less than 30 nm. Detailed properties of the microstructure, phase composition, and free carbon content were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), a thermogravimetric (TG) analysis, according to the and Brunauer-Emmett-Teller (BET) specific surface area from N2 isotherms at 77 K.

A Study of the Cap Model for Metal and Ceramic Powder under Cold Compaction (냉간 압축 하에서 금속 및 세라믹 분말에 대한 캡 모델의 연구)

  • Lee, Sung-Chul;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1376-1383
    • /
    • 2006
  • Densification behavior of various metal and ceramic powders was investigated under cold compaction. The Cap model was proposed by using the parameters involved in the yield function for sintered metal powder and volumetric strain evolution under cold isostatic pressing. The parameters for ceramic powder can also be obtained from experimental data under triaxial compression. The Cap model was implemented into a finite element program (ABAQUS) to compare with experimental data for densification behavior of various metal and ceramic powders under cold compaction. The agreement between finite element calculations from the Cap model and experimental data is very good for metal and ceramic powder under cold compaction.

The Thermal Changes of Precipitated Hydroxyapatite (습식 합성 Hydroxyapatite의 가열 분해성)

  • Kim, Chang-Eun;Park, Hoon;Kim, Bae-Yeon;Lee, Dong-Yoon
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.7
    • /
    • pp.907-915
    • /
    • 1990
  • The hydroxyapatite powder was prepared by the precipitation method. The obtained powder was heat-treated and its products were investigated in order to characterize its decomposition process. The powder was Ca-deficient hydroxyapatite with no relation to the Ca/P mole ratio in the initial solution. The obtained hydroxyapatite was thermally decomposed into tricalcium phosphate [Ca3(PO4)2, TCP] after heat-treatment above 80$0^{\circ}C$ and the extent of the decomposition was dependent on the nonstoichiometry of obtained hydroxyapatite, and the resultant hydroxyapatite and tricalcium phosphate maintained stable forms up to 120$0^{\circ}C$. The hydroxyapatite powder had the better stability with the samller the nonstoichinometry of hydroxyapatite. And the quantities of tricalcium phosphate obtained after decomposition were decreased, and also the corresponding decomposition temperatures were increased with decreasing extent of nonstoichiometry in precipitated hydroxyapatite.

  • PDF

Effect of Ceramic Ball Inclusion on Densification of Metal Powder Compact (삽입된 세라믹 볼이 금속분말성형체의 치밀화에 미치는 영향)

  • Park, Hwan;Yu, Yo-Han;Kim, Gi-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.29-37
    • /
    • 2000
  • The effect of a ceramic ball inclusion on densification behavior of a metal powder compact was investigated under cold isostatic pressing, pressureless sintering and hot isostatic pressing. To simulate those processes, proper constitutive models were implemented into a finite element program (ABAQUS). Measured density distributions of metal powder compacts were also compared with finite element results and showed the same trend with simulated results. Residual stress distributions were calculated by finite element analysis to study the effect of ceramic ball inclusions with different thermal expansion coefficients. The higher residual stress was observed in a metal powder compact when the difference between thermal expansion coefficients for a ceramic ball and metal powder became larger. Samples produced by Wing showed more uniform density distributions and lower residual stresses compared to those by sintering after cold isostatic pressing. For various sizes of ceramic ball inclusions, densification and deformation of powder compacts were also studied during hot isostatic pressing.

Effects of Particle Size and Binder Phase Addition on Formability of Li-Si Alloy Powder for Thermal Battery Anode (열전지 음극재용 Li-Si 원료의 성형성에 미치는 입자크기와 바인더첨가 효과)

  • Ryu, Sung-Soo;Kim, Hui-Sik;Kim, Seongwon;Kim, Hyung-Tae;Cheong, Hae-Won;Lee, Sung-Min
    • Journal of Powder Materials
    • /
    • v.21 no.5
    • /
    • pp.331-337
    • /
    • 2014
  • The effects of particle size of Li-Si alloy and LiCl-KCl addition as a binder phase for raw material of anode were investigated on the formability of the thermal battery anode. The formability was evaluated with respect to filling density, tap density, compaction density, spring-back and compressive strength. With increasing particle size of Li-Si alloy powder, densities increased while spring-back and compressive strength decreased. Since the small spring-back is beneficial to avoiding breakage of pressed compacts, larger particles might be more suitable for anode forming. The increasing amount of LiCl-KCl binder phase contributed to reducing spring-back, improving the formability of anode powder too. The control of particle size also seems to be helpful to get double pressed pellets, which consisted of two layer of anode and electrolyte.

Hot Petroleum Drying Method to the Preparation of Multicomponent Oxide Ceramic Material (다성분계 산화물의 요업재료 제조를 위한 석유 증발 건조 방법)

  • 변수일
    • Journal of the Korean Ceramic Society
    • /
    • v.14 no.3
    • /
    • pp.163-168
    • /
    • 1977
  • As a wet chemical drying process "hot petroleum drying method" was applied and developed for preparing uniformly fine oxide powder with high purity and sinterreactivity. Using this method solution of sulfates was dried in hot petroleum bath (~17$0^{\circ}C$) to sulfate powder from which corresponding mullite doped by Fe3+ ion was formed. Particle size, shape, decomposition by heat, and phase identification of sulfate andoxide powders determined by DTA, TGA, X-ray diffraction, analysis and electron microscopy: sulfate powder prepared by this drying method is an intimate mixture of the amorphous form of uniformly and finely distributed spherical particles (0.05-0.1$\mu$). Mullitization with the sulfate powder occurs at 110$0^{\circ}C$ in air. The morphology of mullite particle made by firing the sulfate powder at 135$0^{\circ}C$ in oxygen atmosphere is granular of 0.1-0.3$\mu$ in size. This drying process proved to be a very effective method for preparing fine, homogeneous, and highly sinterreactive multicomponent oxide powder without conventional ceramic process of mixing, milling, and granulating. This process can be also applied for preparing electronic ceramic materials which are requisite for high purity and homogeneity.mogeneity.

  • PDF

A Study on the Basic Tundish Coating Powder (Tundish Coating Powder의 염기성화에 관한 연구)

  • 정복환;김양훈;오양우;김성희
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.4
    • /
    • pp.283-288
    • /
    • 1983
  • The properties of basic tundish coating powder were investigated comparing with acidic tundish coating powder especially in the corrosion resistance to the molten steel and the influence on non-metallic inclusion. The results show that the basic coating powder is superior to the acidic coating powder in corrosion resistance. It is appeared that the basic coating powder lining has less influence on the formation of non-metallic inclusions. These results will be promissing to reduce the coating thickness in tundish lining operation.

  • PDF

Stimulation Effect of a Soft Ferrite Ceramic Powder on Growth in Plant Cell and Tissue Cultures (연자성 세라믹 분말에 의한 식물세포 및 조직의 생장촉진 효과)

  • Ahn, Jun-Cheul;Kim, Yu-Jung;Park, Chan-Young;Hwang, Baik
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.530-534
    • /
    • 1998
  • The addition of the ceramic powder as state of bare in culture medium has stimulated the growth of Achyranthes japonica in both the disorganized cell and the plantlet. The grwoth rate of Hyoscyamus niger adventitious root and Pylatycodon grandiflorum hairy root was enhanced up to 100 and 250%, respectively, even though Scopolia parviflora hairy root and Hyoscyamus albus adventitious root were not. The ceramic powder has enhanced the growth of H. niger adventitious root even in a test tube immersed into its culture medium to irradiate alone without any direct contact. The ceramic powder seems to have a significant role on both the growth and the physiological action of some plants.

  • PDF