• Title/Summary/Keyword: Ceramic Matrix Composites

Search Result 217, Processing Time 0.024 seconds

Enhancement of Oxygen and Moisture Permeability with Illite-Containing Polyethylene Film

  • Seong, Dong Min;Lee, Hyesun;Chang, Jeong Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.6
    • /
    • pp.601-605
    • /
    • 2019
  • This work reports the preparation of ceramic hybrid films with illite-polyethylene composites analyzed as a function of concentration of added illite in polyethylene. The enhancement of oxygen and water-vapor transmission rate of illite-polyethylene film was evaluated to determine its influence on the freshness in fruit packaging. Particle size of illite materials was controlled in the range of 1~10 ㎛ and then mixed with LDPE to form the masterbatch. Ceramic hybrid films were prepared through a blown film making process. To determine the dispersity and abundancy of illite materials in the polyethylene matrix, various characterizations of illite-PE hybrid masterbatch and films were performed using SEM, TGA, and FT-IR. The oxygen and water-vapor transmission rate of illite-polyethylene film was found to be two times higher than that of LDPE film.

Properties of SiC-$ZrB_2$ Electroconductive Ceramic Composites by Spark Plasma Sintering (방전플라즈마 소결에 의한 SiC-$ZrB_2$ 도전성 세라믹 복합체 특성)

  • Shin, Yong-Deok;Ju, Jin-Young;Jo, Sung-Man;Lee, Jung-Hoon;Kim, Cheol-Ho;Lee, Hee-Seung
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1252_1253
    • /
    • 2009
  • The composites were fabricated by adding 0, 15, 20, 25[vol.%] Zirconium Diboride(hereafter, $ZrB_2$) powders as a second phase to Silicon Carbide(hereafter, SiC) matrix. The physical, mechanical and electrical properties of electroconductive SiC ceramic composites by spark plasma sintering(hereafter, SPS) were examined. Reactions between $\beta$-SiC and $ZrB_2$ were not observed in the XRD analysis The relative density of mono SiC, SiC+15[vol.%]$ZrB_2$, SiC+20[vol.%]$ZrB_2$ and SiC+25[vol.%]$ZrB_2$ composites are 90.97[%], 74.62[%], 77.99[%] and 72.61[%] respectively. The XRD phase analysis of the electroconductive SiC ceramic composites reveals high of SiC and $ZrB_2$ and low of ZrO2 phase. The electrical resistivity of mono SiC, SiC+15[vol.%]$ZrB_2$, SiC+20[vol.%]$ZrB_2$ and SiC+25[vol.%]$ZrB_2$ composites are $4.57{\times}10^{-1}$, $2.13{\times}10^{-1}$, $1.53{\times}10^{-1}$ and $6.37{\times}10^{-2}[{\Omega}{\cdot}cm]$ at room temperature, respectively. The electrical resistivity of mono SiC, SiC+15[vol.%]$ZrB_2$, SiC+20[vol.%]$ZrB_2$ and SiC+25[vol.%]$ZrB_2$ are Negative Temperature Coefficient Resistance(hereafter, NTCR) in temperature ranges from 25[$^{\circ}C$] to 100[$^{\circ}C$]. It is convinced that SiC+20[vol.%]$ZrB_2$ composite by SPS can be applied for heater above 1000[$^{\circ}C$].

  • PDF

A Poling Study on a Piezoceramic/Polymer 0-3 Composites for Hydrophone Applications (Hydrophone 응용을 위한 Piezoceramic/Polymer 0-3 Composite의 분극 개선)

  • Lee, S.H.;Cho, H.C.;SaGong, G.;Seul, S.D.;Koo, H.B.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.349-352
    • /
    • 1989
  • Poling piezoelectric ceramic-polymer composites with 0-3connectivity is difficult because of the high dielectric constant of most of the ferroelectric filler materials, and the high resistivity of the polymer matrix. To aid in poling this type of composite, conductivity of the polymer phase can be controlled by adding small amount of a semiconductor phase such as germanium, carbon or silicon. In this study, flexible piezoelectric composites of $PbTiO_3$ powder and Eccogel polymer were developed using small amounts of a semiconducting phase. These composites were poled rapidly at low voltages, resulting in properties superior to composites prepared without a conductive phase. The effect of addition of various conductive phase with different volume percentage on the dielectric and piezoelectric properties of the composite are discussed here.

  • PDF

Analysis of Densification Process of Carbon/Carbon Composites with Pitch as an Impregnant

  • Oh, Seh-Min;Park, Yang-Duk
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.240-244
    • /
    • 1998
  • The analytical method was developed to calculate efficiency of densifying carbon/carbon (C/C) composites using coal tar pitch as a matrix precursor at each cyle. Three factors were defined in analyzing the densification process: impregnation efficiency, retention efficiency, and overall densification efficiency. The relationships developed were applied to the experimental results for three densification cycles of C/C composites with pitches as an impregnant to evaluate the factors which may depend on the impregnant and on the route of carbonization. The impregnation efficiency increased with the repeated process cycles whereas the retention efficiency decreased irrespective of the impregnant and carbonization route. Carbonization route P+A+G, in which pressure carbonizationl (P) and graphitization (G) were done before after atmospheric pressure carboniztion (A) respectively, using impregnant of high carbon yields was the most effective method in densifying C/C composites.

  • PDF

Ultra-high Temperature EM Wave Absorption Behavior for Ceramic/Sendust-aluminosilicate Composite in X-band (X-Band 영역에서의 세라믹/샌더스트-알루미노실리케이트 복합재의 초고온 전자파 흡수 거동)

  • Choi, Kwang-Sik;Sim, Dongyoung;Choi, Wonwoo;Shin, Joon-Hyung;Nam, Young-Woo
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.201-215
    • /
    • 2022
  • This paper presents the development of thin and lightweight ultra-high temperature radar-absorbing ceramic composites composed of an aluminosilicate ceramic matrix-based geopolymer reinforced ceramic fiber and sendust magnetic nanoparticles in X-band frequency range (8.2~12.4 GHz). The dielectric properties with regard to complex permittivity of ceramic/sendust-aluminosilicate composites were proportional to the size of sendust magnetic nanoparticle with high magnetic characteristic properties as flake shape and its concentrations in the target frequency range. The characteristic microstructures, element composition, phase identification, and thermal stability were examined by SEM, EDS, VSM and TGA, respectively. The fabricated total thicknesses of the proposed single slab ultra-high temperature radar absorber correspond to 1.585 mm, respectively, exhibiting their excellent EM absorption performance. The behavior of ultra-high temperature EM wave absorption properties was verified to the developed free-space measurement system linked with high temperature furnace for X-band from 25℃ to 1,000℃.

Review of the Research and Development of Ceramic Matrix Composite Materials and Future Works (세라믹 매트릭스 복합재료 연구 개발 동향 및 전망)

  • Lee, Tae Ho
    • Composites Research
    • /
    • v.27 no.4
    • /
    • pp.123-129
    • /
    • 2014
  • Ceramic matrix composites (CMCs) consist of such reinforcements as carbides, nitrides, borides and oxides, which have high melting points, low density, high modulus and high strength, for the purpose of increasing toughness. These materials are used for heat shielding systems for aerospace vehicles, high-temperature gas turbine combustion chambers, turbine blades, stator vane parts, etc. Oxide CMCs are used for the components of burner and flame holder and the high-temperature gas duct. CMCs are also applied to brake disks, which are subjected to severe thermal shock, and slide bearing parts under heavy loads. The research and development of the CMC are progressed for the strategic purpose in defense and energy industry; for instance, for aerospace applications in the U.S., and for hyper-speed aircraft, gas turbines, and atomic fissions in U.S., Japan, and Europe.

Influence of Winding Patterns and Infiltration Parameters on Chemical Vapor Infiltration Behaviors of SiCf/SiC Composites (SiCf/SiC 복합체의 화학기상침착 거동에 미치는 권선 구조와 침착 변수의 영향)

  • Kim, Daejong;Ko, Myoungjin;Lee, Hyeon-Geun;Park, Ji Yeon;Kim, Weon-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.453-458
    • /
    • 2014
  • SiC and its composites have been considered for use as nuclear fuel cladding materials of pressurized light water reactors. In this study, a $SiC_f$/SiC composite as a constituent layer of SiC triplex fuel cladding was fabricated using a chemical vapor infiltration (CVI) process in which tubular SiC fiber preforms were prepared using a filament winding method. To enhance the matrix density of the composite layer, winding patterns, deposition temperature, and gas input ratio were controlled. Fiber arrangement and porosity were the main parameters influencing densification behaviors. Final density of the composites decreased as the SiC fiber volume fraction increased. The CVI process was optimized to densify the tubular preforms with high fiber volume fraction at a high $H_2$/MTS ratio of 20 at $1000^{\circ}C$; in this process, surface canning of the composites was effectively retarded.

Characteristics of Glass/Carbon Fiber Hybrid Composite Using by VARTM (VARTM 공정을 이용한 유리/탄소섬유 하이브리드 복합체의 특성)

  • Han, In-Sub;Kim, Se-Young;Woo, Sang-Kuk;Hong, Ki-Seok;Soe, Doo-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.10 s.293
    • /
    • pp.607-612
    • /
    • 2006
  • In VARTM (Vacuum Assisted Resin Transfer Molding) process, the permeability generally controls the filling time of the resin and it also affects the void characteristics of the fiber composite. In this study, carbon and glass fiber inter-layered hybrid composites (carbon fiber centered stack) with an epoxy matrix were fabricated by VARTM process and evaluated the resin flow and macro void characteristics. The permeability of glass fiber was higher than that of carbon fiber used in this study. Using Darcy's equation, the permeability of hybrid composites could be predicted and experimentally confirmed. After curing, the macro void content of hybrid composites was investigated using image analyzer. The calculated filling time was well agreed with experimental result and the void content was significantly changed in hybrid composites.