• 제목/요약/키워드: Ceramic Coating

검색결과 942건 처리시간 0.021초

실리카-이산화티탄 복합 코팅층의 열적, 화학적 안정성 및 인쇄적성 평가 (Printability of Thermally and Chemically Stable Silica-Titanium Dioxide Composite Coating Layer)

  • 김혜진;한규성;황광택;남산;김진호
    • 한국재료학회지
    • /
    • 제29권10호
    • /
    • pp.631-638
    • /
    • 2019
  • As automation systems become more common, there is growing interest in functional labeling systems using organic and inorganic hybrid materials. Especially, the demand for thermally and chemically stable labeling paper that can be used in a high temperature environment above $300^{\circ}C$ and a strong acid and base atmosphere is increasing. In this study, a composite coating solution for the development of labeling paper with excellent thermal and chemical stability is prepared by mixing a silica inorganic binder and titanium dioxide. The silica inorganic binder is synthesized using a sol-gel process and mixed with titanium dioxide to improve whiteness at high-temperature. Adhesion between the polyimide substrate and the coating layer is secured and the surface properties of the coating layer, including the thermal and chemical stability, are investigated in detail. The effects of the coating solution dispersion on the surface properties of the coating layer are also analyzed. Finally, it is confirmed that the developed functional labeling paper showed excellent printability.

세라믹 코팅 Al 부스바의 열적·기계적 특성 (Thermal and Mechanical Properties of Ceramic Coated Al Bus Bar)

  • 곽동순;백승명;곽민환
    • 전기학회논문지
    • /
    • 제66권11호
    • /
    • pp.1651-1656
    • /
    • 2017
  • This paper deals with the thermal and mechanical properties of ceramic coating material for bus bars. A ceramic coated samples were prepared for the mechanical properties test. There are two types of samples. One is a square shape and the other is a busbar shape. Each sample was deteriorated for 30 days to compare the thermal and mechanical properties with the non-degraded samples. Two thermal properties tests are TGA and flammability tests, and four mechanical properties tests are drop impact test, cross cut, tensile test, and bend test. The ceramic coating material was never damaged by impact and did not separate from aluminum in the cross cut test. In the tensile test, the breakage of the insulating material did not occur until aluminum fractured, and the breakage of the insulating material did not occur until the maximum load in the bending test. The decomposition temperature (melting point) of the ceramic coating material was higher than that of other epoxy insulators. This ceramic coating material is nonflammable and it has excellent fire stability.

습식법으로 제조된 BN 중간층을 가진 Cf/SiC 복합재의 제조 및 물성 평가 (Fabrication and Characterization of Cf/SiC Composite with BN Interphase Coated by Wet Chemical Process)

  • 구준모;김경호;한윤수
    • 한국표면공학회지
    • /
    • 제50권6호
    • /
    • pp.523-530
    • /
    • 2017
  • In this study, we developed the h-BN interphase for ceramic matrix composites (CMCs) through a wet chemical coating method, which has excellent price competitiveness and is a simple process as a departure from the existing high cost chemical vapor deposition method. The optimum condition for nitriding an h-BN interphase using boric acid and urea as precursors were derived, and the h-BN interphase coating through a wet method on a carbon preform of 2.5 D was conducted to apply the optimum conditions to the CMCs. In order to control the coating property via the wet coating method, four parameters were investigated such as dipping time of the specimen in the precursor solution, the ratio of boric acid and urea in the precursor, the concentration of solution where the precursor was dissolved, and the cycle of dipping and dry process. The CMCs was fabricated through polymer impregnation and pyrolysis (PIP) processes and a three-point flexural strength test was conducted to verify the role of the coated h-BN interphase.

도재 소부용 비귀금속 합금과 티타늄에 적용한 Gold Bonding Agent의 전자현미경적 평가 (SEM/EDS Evaluation of Gold Bonding Agent Applied on Non-precious Alloys and Cast CP-Ti)

  • 이정환;안재석
    • 치위생과학회지
    • /
    • 제9권2호
    • /
    • pp.153-160
    • /
    • 2009
  • 본 연구는 금속-도재 수복물 제작에 사용되는 Ni-Cr alloy와 Co-Cr alloy, 그리고 티타늄에 gold bonding agent를 도포하여 Au coating 층을 형성하였다. 각 시편의 절단면을 전자현미경으로 Au coating 층과 porcelain bonder, 그리고 불투명 도재간의 결합을 관찰하였고, 각 계면의 상태를 SEM/EDS 방법으로 조사하였다. 실험에서 사용된 재료와 방법의 범위 내에서 다음과 같은 결론을 얻었다. 1. Gold bonding agent를 사용하여 형성한 Au coating 층은 미세다공성을 가진 구조로 판단되었다. 2. Au coating 층과 porcelain bonder 그리고 불투명 도재간의 결합은 잘 일어나 보였다. 3. Au coating 층은 도재 소성과정에서 발생하는 산화층의 확산을 제한하는 것으로 관찰되었다.

  • PDF

알루미나 세라믹(Alumina Ceramic) 코팅층의 기술적인 특성과 잔류응력의 해소에 관한 연구 (A Study on the Mechanical Properties and Residual Stresses of the Thermally Sprayed Alumina Ceramic Coating Layer)

  • 김영식
    • 한국해양공학회지
    • /
    • 제10권2호
    • /
    • pp.88-97
    • /
    • 1996
  • The pupose of this study is to improve the mechanical properies and to evaluate the residual stresses of flame-sprayed Alumina ceramic coating layer. The first work in this study is to investigate the effects of strengthening heat treatments on the mechanical properties of coating layer. Strengthening heat treatments for sprayed specimens were carried out in vaccum furnace. The mechanical properties such as microhardness, thermal shock resistance, adhesive strength and erosion resistance were tested for the sprayed specimens after strengthening heat treatments. And it was clear that the mechanical properties of coating layer were much improved by strengthening heat treatments. The second work in this study is to evalute the residual stresses in coating lsyer by numerical analysis. FDM and FEM were used to analyze temperature distribution and residul stresses in coating layer. It was proved that are tensile stresses in coating layer and that residual stresses can be controlled by the appropriate selection of the spraying parameters such as preheat temperature, coating thickness and bond coat thickness.

  • PDF

철도용 강교량의 부식에 대한 중방식 도장의 특성연구 (A Study for Heavy Duty Coating by Corrosion of the Steel Bridge)

  • 공병승;김민호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.345-351
    • /
    • 2007
  • The research which it sees will confront to the coating with paint material and a coating with paint public law application of the river bridge and it will present it will sleep and it will execute, it will reach and a comparison - an analysis from the research which it tries to respect middle of special environment the polyurethane system which is a method coating with paint system and fluorine resin system, against a ceramic system it executed more an objectivity and rational fundamental data. With research method against each coating with paint evening sunlight a research investigation material and structure, it separated with spatial-temporal characteristic and economic viewpoint it executed. When considering overview from material viewpoint, fluorine resin system ceramic system polyurethane system pure with it is judged with the fact that it is excellent. There is a possibility of saying that the coefficient of friction of the fluorine resin system which uses the weapon quality zinc end coating compound ever so hard and polyurethane system is excellent ceramic system than from structure viewpoint. That fluorine resin system = polyurethane system ceramic system pure with it is excellent, it is judged from spatial-temporal characteristic viewpoint. It measures but it considered an internal troubles year grudge in the standard which becomes disturbance the place where it executes the market the expectation life person of the general bridge against 100 years the result fluorine resin system polyurethane system ceramic system which compares a materials unit cost pure with it appeared.

  • PDF

유압실린더 세라믹코팅 기공률 최소화 방안 (Minimization of Porosity in Ceramic Coating on a Hydraulic Cylinder)

  • 정영호;문승재;유호선
    • 플랜트 저널
    • /
    • 제6권4호
    • /
    • pp.63-71
    • /
    • 2010
  • The best way to prevent the corrosion of piston rod is a selection of quality of the material and method of construction which minimize the porosity. The high velocity oxy fuel(HVOF) method, which generates lower porosity than existing plasma spray, was applied to ceramic laminated bond layer. Porosity percentage fell to bellow 2%, lower than that of plasma spray at 7%. Coating material of ceramic-coated main layer was selected as the $Cr_2O_3$ affiliation material, which is more dense than $Al_2O_3$ affiliation. To fill up the pores formed after the coating process, we sealed the bond layer and main layer. Sealing process was performed twice, once after the coating and once after the grinding. Upon the anti-corrosion test on the sealed sample and on the non-sealed sample, it is confirmed that the sealed sample was not corroded for 1,000 hours while the non-sealed sample was corroded within 48 hours.

  • PDF

SD460 철근의 세라믹 코팅에 의한 내식성 향상연구 (Corrosion Resistance of SD460 Reinforcing Rod by Ceramic Coating)

  • 박기용;이종권;홍석우
    • Corrosion Science and Technology
    • /
    • 제8권4호
    • /
    • pp.157-161
    • /
    • 2009
  • The corrosion resistance of reinforcing bar was studied to endure the marine environment during shipment. The red rust on the surface did not damage the adherence in the concrete structures, especially in highly alkaline environment, but made the consumer doubt of the quality. The passivation process by alkalization of the quenching water in the tempcore process failed to endure the long shipping period. The ceramic coating by sol-gel process improved the corrosion resistance without damaging the mechanical properties and adherence between concrete and reinfiorcing bar. Optimal concentration of the coating solution and coating temperature were tested. No additional energy was necessary for the coating process by spraying during cooling process, resulting simplified process and low cost. Salt spray test, cyclic corrosion test and atmospheric test were employed to confirm the resistance. The corrosion rates were presented by rating number and polarization resistance. The coating layer was examined by FIB, XRD and SEM etc.

알칼리 반응에 의한 알루미나-실리카-산화칼슘계 무기질 자기경화 코팅의 특성 (Properties of Self-hardened Inorganic Coating in the System Alumina-Silica-Calcium Oxide by the Reaction with Alkalies)

  • 전창섭;송태웅
    • 한국세라믹학회지
    • /
    • 제47권5호
    • /
    • pp.381-386
    • /
    • 2010
  • Some basic properties of inorganic coatings hardened by the room temperature reaction with alkalies were examined. The coating paste was prepared from the powders in the system $Al_2O_3-SiO_2$-CaO using blast furnace slag, fly ash and amorphous ceramic fiber after mixing with a solution of sodium hydroxide and water glass. The mineralogical and morphological examinations were performed for the coatings prepared at room temperature and after heating to $1200^{\circ}C$ respectively. The binding force of the coating hardened at room temperature was caused by the formation of fairly dense matrix mainly composed of oyelite-containing amorphous phase formed by the reaction between blast furnace slag and alkali solution. At the temperature, fly ash and ceramic fiber was not reacted but imbedded in the binding phase, giving the fluidity to the paste and reinforcing the coating respectively. During heating up to $1200^{\circ}C$, instead of a break in the coating, anorthite and gehlenite was crystallized out by the reaction among the binding phase and unreacted components in ternary system. The crystallization of these minerals revealed to be a reason that the coating maintains dense morphology after heating. The maintenance of binding force after heat treatment is seemed to be also caused by the formation of welldispersed fiber-like mineral phase which is originated from the shape of the amorphous ceramic fiber used as a raw materials.

A Nano-particle Deposition System for Ceramic and Metal Coating at Room Temperature and Low Vacuum Conditions

  • Chun, Doo-Man;Kim, Min-Hyeng;Lee, Jae-Chul;Ahn, Sung-Hoon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권1호
    • /
    • pp.51-53
    • /
    • 2008
  • A new nano-particle deposition system (NPDS) was developed for a ceramic and metal coating process. Nano- and micro-sized powders were sprayed through a supersonic nozzle at room temperature and low vacuum conditions to create ceramic and metal thin films on metal and polymer substrates without thermal damage. Ceramic titanium dioxide ($TiO_2$) powder was deposited on polyethylene terephthalate substrates and metal tin (Sn) powder was deposited on SUS substrates. Deposition images were obtained and the resulting chemical composition was measured using X-ray photoelectron spectroscopy. The test results demonstrated that the new NPDS provides a noble coating method for ceramic and metal materials.