• Title/Summary/Keyword: Ceptrum coefficients

Search Result 2, Processing Time 0.022 seconds

On a Reduction of Computation Time of FFT Cepstrum (FFT 켑스트럼의 처리시간 단축에 관한 연구)

  • Jo, Wang-Rae;Kim, Jong-Kuk;Bae, Myung-Jin
    • Speech Sciences
    • /
    • v.10 no.2
    • /
    • pp.57-64
    • /
    • 2003
  • The cepstrum coefficients are the most popular feature for speech recognition or speaker recognition. The cepstrum coefficients are also used for speech synthesis and speech coding but has major drawback of long processing time. In this paper, we proposed a new method that can reduce the processing time of FFT cepstrum analysis. We use the normal ordered inputs for FFT function and the bit-reversed inputs for IFFT function. Therefore we can omit the bit-reversing process and reduce the processing time of FFT ceptrum analysis.

  • PDF

The Speaker Identification Using Incremental Learning (Incremental Learning을 이용한 화자 인식)

  • Sim, Kwee-Bo;Heo, Kwang-Seung;Park, Chang-Hyun;Lee, Dong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.576-581
    • /
    • 2003
  • Speech signal has the features of speakers. In this paper, we propose the speaker identification system which use the incremental learning based on neural network. Recorded speech signal through the Mic is passed the end detection and is divided voiced signal and unvoiced signal. The extracted 12 order cpestrum are used the input data for neural network. Incremental learning is the learning algorithm that the learned weights are remembered and only the new weights, that is created as adding new speaker, are trained. The architecture of neural network is extended with the number of speakers. So, this system can learn without the restricted number of speakers.