• 제목/요약/키워드: Cepstral mean subtraction

검색결과 23건 처리시간 0.017초

묵음 구간의 평균 켑스트럼 차감법을 이용한 채널 보상 기법 (Channel Compensation technique using silence cepstral mean subtraction)

  • 우승옥;윤영선
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2005년도 춘계 학술대회 발표논문집
    • /
    • pp.49-52
    • /
    • 2005
  • Cepstral Mean Subtraction (CMS) makes effectively compensation for a channel distortion, but there are some shortcomings such as distortions of feature parameters, waiting for the whole speech sentence. By assuming that the silence parts have the channel characteristics, we consider the channel normalization using subtraction of cepstral means which are only obtained in the silence areas. If the considered techniques are successfully used for the channel compensation, the proposed method can be used for real time processing environments or time important areas. In the experiment result, however, the performance of our method is not good as CMS technique. From the analysis of the results, we found potentiality of the proposed method and will try to find the technique reducing the gap between CMS and ours method.

  • PDF

필터 뱅크 에너지 차감을 이용한 묵음 특징 정규화 방법의 성능 향상 (Performance Improvements for Silence Feature Normalization Method by Using Filter Bank Energy Subtraction)

  • 신광호;최숙남;정현열
    • 한국통신학회논문지
    • /
    • 제35권7C호
    • /
    • pp.604-610
    • /
    • 2010
  • 본 논문에서는 기존의 CLSFN (Cepstral distance and Log-energy based Silence Feature Normalization) 방법의 인식성능을 향상시키기 위하여, 필터 뱅크 서브 밴드 영역에서 잡음을 차감하는 방법과 CLSFN을 결합하는 방법, 즉 FSFN (Filter bank sub-band energy subtraction based CLSFN)을 제안하였다. 이 방법은 음성으로부터 특징 파라미터를 추출할 때 필터 뱅크 서브 밴드 영역에서 잡음을 제거하여 켑스트럼 특징을 향상시키고, 이에 대한 켑스트럼 거리를 이용하여 음성/묵음 분류의 정확도를 개선함으로써 기존 CLSFN 방법에 비해 향상된 인식성능을 얻을 수 있다. Aurora 2.0 DB를 이용한 실험결과, 제안하는 FSFN 방법은 CLSFN 방법에 비해 평균 단어 정확도 (word accuracy)가 약 2% 향상되었으며, CMVN (Cepstral Mean and Variance Normalization)과의 결합에서도 기존 모든 방법에 비해 가장 우수한 인식성능을 나타내어 제안 방법의 유효성을 확인할 수 있었다.

심리 음향 겝스트럼 평균 차감법을 이용한 이동 전화망에서의 음질 평가 (Speech Quality Measure in a Mobile Communication System using PLP Cepstral Distance with CMS)

  • 윤종진;박상욱;박영철;안동순;윤대희
    • 한국통신학회논문지
    • /
    • 제25권12B호
    • /
    • pp.2046-2051
    • /
    • 2000
  • 본 논문에서는 기존의 음질 평가 방법들보다 우수할 뿐 아니라 다양한 채널 경로의 음성 신호에 대해서도 일관된 성능을 갖는 새로운 음질 평가 방법 PLP-CMS(Perceptual Linear Predictive-Cepstral Mean Subtraction)를 제안한다. CDMA PCS 이동 전화 환경에서 음성 신호의 주관적 음질을 효과적으로 예측할 수 있는 PLP-CMS는 심리 음향 선형 예측 분석(PLP Analysis: Perceptual Linear Predictive Analysis)을 이용하여 주관적 음질과의 상관 관계를 높였으며, 겝스트럼 평균 차감(CMS: Cepstral Mean Subtraction) 과정을 통하여 PSTN 경로에 무관하게 일관된 성능을 갖음을 확인하였다.

  • PDF

심리 음향 켑스트럼 평균 차감법을 이용한 이동 전화망에서의 음질 평가 (Speech Quality Measure in a Mobile Communication System Using PLP Cepstral Distance with CMS)

  • 윤종진;박상욱;박영철;윤대희;차일환
    • 음성과학
    • /
    • 제6권
    • /
    • pp.163-179
    • /
    • 1999
  • For the set up, management and repair of a mobile communication system, continuous estimation of speech quality is required. Speech quality measurement can be conducted by listener's judgement in a subjective test such as MOS (Mean Opinion Score) test. However, this method is laborious, expensive and time-consuming, it is advisable to predict subjective speech quality via objective measures. This paper presents a robust objective speech quality measure, PLP-CMS (Perceptual Linear Predictive-Cepstral Mean Subtraction), which can predict subjective speech quality in mobile communication systems. PLP-CMS has a high correlation with subjective quality owing to PLP (Perceptual Linear Predictive) analysis and shows a robust performance not being influenced by PSTN (Public Switched Telephone Network) channel effects due to CMS (Cepstral Mean Subtraction). To prove the performance of our proposed algorithm, we carried out subjective and objective quality estimation on speech samples which are variously distorted in a real mobile communication system. As a result, we demonstrated that PLP-CMS has a higher correlation with subjective quality than PSQM (Perceptual Speech Quality Measure) and PLP-CD (Perceptual Linear Predictive-Cepstral Distance).

  • PDF

전화망에서의 음성인식을 위한 전처리 연구 (Front-End Processing for Speech Recognition in the Telephone Network)

  • 전원석;신원호;양태영;김원구;윤대희
    • 한국음향학회지
    • /
    • 제16권4호
    • /
    • pp.57-63
    • /
    • 1997
  • 본 논문에서는 다양한 전화선 채널에서 수집된 한국통신(KT)의 데이터베이스를 이용하여 인식 시스템의 성능을 향상시키기 위한 효율적인 특징벡터 및 전처리방법을 연구하였다. 먼저 잡음 및 주변 환경 변화에 강인한 갓으로 알려져 있는 특징벡터들을 이용한 인식 성능을 비교하고, 가중 켑스트랄 거리측정 방법을 이용하여 인식시스템의 성능 향상을 검증하였다. 실험 결과, KT의 인식 시스템에서 이용하는 LPC 켑스트럼의 경우에 비하여 PLP(Perceptual Linear Prediction)과 MFCC)Mel Frequency Cepstral Coefficient)등에 대하여 인식률이 향상되었다. 켑스트럼간의 거리측정에 있어서는 RPS(Root Power Sums)와 BPL(Band Pass Lifter)과 같은 가중 켑스트랄 거리측정 함수들이 인식성능 향상에 도움을 주었다. 스펙트럼 차감법(Spectral Subtraction)의 적용은 왜곡에 의한 효과가 커서 인식률이 저하되었지만, RASTA(RelAtive SpecTrAl) 처리방법, CMS(Cepstral Mean Subtraction), SBR(Signal Bias Removal)의 적용시에는 인식 성능 향상을 보였다. 특히, CMS 방법은 간편하면서도 높은 인식 성능 향상을 보였다. 마지막으로, CMS의 실시간 구현을 위한 방법들의 인식 성능을 비교하고, 인식 성능 저하를 막기 위한 개선책을 제시하였다.

  • PDF

감정에 강인한 음성 인식을 위한 음성 파라메터 (Speech Parameters for the Robust Emotional Speech Recognition)

  • 김원구
    • 제어로봇시스템학회논문지
    • /
    • 제16권12호
    • /
    • pp.1137-1142
    • /
    • 2010
  • This paper studied the speech parameters less affected by the human emotion for the development of the robust speech recognition system. For this purpose, the effect of emotion on the speech recognition system and robust speech parameters of speech recognition system were studied using speech database containing various emotions. In this study, mel-cepstral coefficient, delta-cepstral coefficient, RASTA mel-cepstral coefficient and frequency warped mel-cepstral coefficient were used as feature parameters. And CMS (Cepstral Mean Subtraction) method were used as a signal bias removal technique. Experimental results showed that the HMM based speaker independent word recognizer using vocal tract length normalized mel-cepstral coefficient, its derivatives and CMS as a signal bias removal showed the best performance of 0.78% word error rate. This corresponds to about a 50% word error reduction as compare to the performance of baseline system using mel-cepstral coefficient, its derivatives and CMS.

켑스트럼으로부터 변환된 로그 스펙트럼을 이용한 포먼트 평활화 켑스트럴 평균 차감법 (Formant-broadened CMS Using the Log-spectrum Transformed from the Cepstrum)

  • 김유진;정혜경;정재호
    • 한국음향학회지
    • /
    • 제21권4호
    • /
    • pp.361-373
    • /
    • 2002
  • 본 논문에서는 음성 인식과 화자 인식에서 채널 변이 정규화를 위해 널리 사용되는 전통적인 켑스트럴 평균차감법 (CMS: Cepstral Mean Subtraction)의 성능을 향상시키기 위한 정규화 방법을 제안한다. 기존의 켑스트럴 평균 차감법은 장구간 켑스트럼의 평균으로 채널 성분을 추정하므로 유성음의 포먼트에 의해 채널 성분이 편향되는 단점을 가진다. 제안된 포먼트 평활화 켑스트럴 평균 차감법 (FBCMS; Formant-broadened CMS)은 켑스트럼으로부터 변환된 로그 스펙트럼에서 포먼트 위치를 쉽게 찾을 수 있고, 포먼트는 전극점 모델로 표현되는 성도 전달 함수의 우세 극점에 대응된다는 사실에 근거한다. 따라서 제안된 방법은 켑스트럼으로부터 음성의 포먼트를 구하고, 이로부터 포먼트의 대역폭을 확장한 켑스트럼을 구한 후 평균함으로써 채널 켑스트럼 성분으로부터 우세 극점들의 영향을 제거한다. 전극점 모델의 우세 극점을 얻기 위해 다항식 인수분해 과정을 거치지 않으므로 연산량을 줄일 수 있으며 포먼트에 해당하는 우세 극점만으로 선택적으로 처리할 수 있다. 본 연구에서는 4가지의 모의 채널을 이용하여 전통적인 켑스트럴 평균 차감법, 극점 필터화 켑스트럴 평균 차감법 (Pole-filtered CMS) 그리고 제안된 방법의 비교실험을 수행하였다. 실제 채널 켑스트럼과 추정된 채널 켑스트럼과의 거리를 측정하는 실험에서 음성에 의한 편향을 완화시켜 실제 채널에 보다 가까운 평균 켑스트럼을 얻을 수 있음을 확인하였다. 또한 문장독립 화자 식별에서 제안된 방법은 전통적인 켑스트럴 평균 차감법보다 우세하고 극점 필터화 켑스트럴 평균 차감법 (Pole-filtered CU)과는 비슷한 결과를 보였다. 결과적으로 제안된 방법은 전통적인 켑스트럴 평균 차감법에 기반하여 효과적인 채널 정규화가 가능하다는 것을 보였다.

화자인식에 효과적인 특징벡터에 관한 비교연구 (A study on Effective Feature Parameters Comparison for Speaker Recognition)

  • 박태선;김상진;문광;한민수
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2003년도 5월 학술대회지
    • /
    • pp.145-148
    • /
    • 2003
  • In this paper, we carried out comparative study about various feature parameters for the effective speaker recognition such as LPC, LPCC, MFCC, Log Area Ratio, Reflection Coefficients, Inverse Sine, and Delta Parameter. We also adopted cepstral liftering and cepstral mean subtraction methods to check their usefulness. Our recognition system is HMM based one with 4 connected-Korean-digit speech database. Various experimental results will help to select the most effective parameter for speaker recognition.

  • PDF

전화선 채널이 화자확인 시스템의 성능에 미치는 영향 (The Effect of the Telephone Channel to the Performance of the Speaker Verification System)

  • 조태현;김유진;이재영;정재호
    • 한국음향학회지
    • /
    • 제18권5호
    • /
    • pp.12-20
    • /
    • 1999
  • 본 논문에서는 깨끗한 환경에서 녹음된 음성데이터와 채널환경에서 수집된 음성데이터의 화자확인 성능을 비교하였다. 채널데이터의 화자확인 성능을 향상시키기 위하여 채널환경에 강인한 특징 파라메타 및 전처리에 대해 연구하였다. 실험을 위한 음성 DB는 어구지시(text-prompted) 시스템을 고려하여 두 자리의 한국어 숫자음으로 구성하였다. 적용한 음성 특징은 LPCC(Linear Predictive Cepstral Coefficient), MFCC(Mel Frequency Cepstral Coefficient), PLP(Perceptually Linear Prediction), LSP(Line Spectrum Pair)이며, 채널 잡음을 제거하기 위한 전처리 과정으로는 음성신호에 대한 필터링을 적용하였다. 추출된 특징으로부터 채널의 영향을 제거 또는 보상하기 위해 cepstral weighting, CMS(Cepstral Mean Subtraction), RASTA(RelAtive SpecTrAl)를 적용하였다. 또한 각각의 특징 및 처리 방법에 대한 음성인식 성능을 제시함으로써 화자확인에서의 성능과 음성인식에서의 성능을 비교하였다. 적용한 음성 특징 및 처리 방법들에 대한 성능 평가를 위해 HTK(HMM Tool Kit) 2.0을 이용하였다. 남자, 여자 화자별로 임계값을 다르게 주는 방법으로 깨끗한 음성데이터와 채널 데이터에 대한 EER(Equal Error Rate)을 구하여 비교하였다. 실험결과 전처리 과정에서 대역통과 필터(150~3800Hz)를 적용하여 저대역 및 고대역의 채널 잡음을 제거하고, 이 신호로부터 MFCC를 추출하였을 때 EER 측면에서의 화자확인 성능이 가장 좋게 나타났다.

  • PDF

유무선 전화를 통한 화자인식 알고리즘에 관한 연구 (A Study on Speaker Recognition Algorithm Through Wire/Wireless Telephone)

  • 김정호;정희석;강철호;김선희
    • 한국음향학회지
    • /
    • 제22권3호
    • /
    • pp.182-187
    • /
    • 2003
  • 본 논문에서는 방사 기저함수 (RBF: Radial Basis Function) 신경망을 이용하여 특징 파라미터를 사상시켜 화자인식의 성능을 개선하기 위한 알고리즘을 제안하였다. 동일한 화자의 유무선 전화의 백터 영역이 서로 다르므로 제안한 화자확인시스템은 유무선 학습모델을 생성하기 위해서 먼저 음성인식을 통해 유무선 채널을 판별하고, 학습하지 않은 채널의 모델은 방사 기저함수 신경망을 이용하여 학습된 모델의 특징 벡터 (LPC-켑스트럼)를 사상하는 방법이다. 모의 실험 결과 기존의 켑스트럼 평균 차감법을 사용할 때보다 제안한 알고리즘을 적용했을 때의 인식율이 약 0.6%∼10.5%의 성능 향상을 보여주었다.