• Title/Summary/Keyword: Centrifugal compresso

Search Result 2, Processing Time 0.019 seconds

Effects of Asymmetric Tip Clearance on Centrifugal Compressor Flow (비대칭 팁간극이 원심압축기의 유동에 미치는 영향)

  • Yoon, Yong-Sang;Song, Seung-Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.533-541
    • /
    • 2005
  • Compared to axial compressors, an analytical model capable of analyzing the flow in centrifugal compressor lacks because of the difficulty in governing equations for radial duct. Therefore, this paper presents a new model to predict flow field in a centrifugal compressor with a sinusoidal asymmetric tip clearance. To predict the 2 dimensional flow in the inlet and exit of the centrifugal compressor, the two flow fields are connected with compressor characteristic based on Moore-Greitzer model. Contrary to axial compressors, the nonuniformity of impeller exit pressure in centrifugal compressor decreases as flow coefficient decreases. In addition, that is sensitive to the slope of pressure rise by eccentricity. The maximum velocity exists right before the maximum tip clearance.

  • PDF

A Parametric Study of Aerodynamic Noise in Centrifugal Compresso (원심압축기의 공력소음에 관한 파라미터 연구)

  • Sun, Hyosung;Lee, Soogab;Lee, Jungeun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.129-134
    • /
    • 2005
  • This paper describes the influence of geometric parameters on the noise generation from a centrifugal compressor. From the analysis of noise measurements, it is observed that Blade Passing Frequency noise related to the rotating impeller is more important, and it is focused on the comparison of this discrete frequency noise according to the shape change. Navier-Stokes solver is used to simulate the flow-field of the impeller and the vaned diffuser, and time-dependent pressure data are calculated and Fourier-transformed to perform the near-field noise prediction. The effects of various geometry design variables such as the gap between the impeller and the diffuser, impeller shape variations on the near-field noise distribution are investigated.