• Title/Summary/Keyword: Centrifugal Compressors

Search Result 50, Processing Time 0.025 seconds

Investigation of Off-Design Performance of Vaned Diffusers in Centrifugal Compressors - Part II : Low Solidity Cascade Diffuser - (원심압축기용 베인디퓨져의 탈설계점 성능연구 - 제2부 : 솔리디티가 작은 익렬디퓨져 -)

  • Oh, JongSik;Lee, HeonSeok
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.91-98
    • /
    • 2001
  • As the second part of the author's study, off-design behavior of the design and performance parameters in the low-solidity cascade diffuser in a centrifugal compressor is investigated. The experimental flange-to-flange compressor map serves the validity of application of the present CFD work to the detailed investigation of the low-solidity cascade diffuser. Some meanline design and performance parameters as well as three-dimensional internal secondary flow fields are studied when the flow rate is changed from deep choke to stall.

  • PDF

Performance Variations of a Small Centrifugal Compressor with Exit Blade Thickness (초소형 원심압축기의 날개 두께 변화에 따른 성능에 관한 실험적 연구)

  • Kang, Shin-Hyoung;Cho, Woon-Je;Yun, Ha-Yong;Lee, Seung-Kap
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.15-21
    • /
    • 1999
  • Some sized centrifugal compressors were designed and their performance measured to investigate the effects of exit blade thickness, width and back swept angle. The impeller of larger blade thickness shows low pressure ratio compared with that of smaller ones. Backswept angle also have a large effect on the efficiency. Measured values of slip factor are quite different from the estimated values of the Wiesner-Busemann model and an increase in the flow late.

  • PDF

A Study on the Starting Characteristic of Variable Speed Centrifugal Chiller (가변속 터보냉동기의 기동특성에 관한 연구)

  • Kim, Hee-Sun;Yun, Hong-Min;Na, Seung-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.512-513
    • /
    • 2012
  • The electric motor is essential to drive turbo machinery. In order to overcome the speed limitations of general motors, the inverter is used to perform high speed to tens of rpm. The high speed drives are widely used in many applications such as turbo blower, turbo centrifugal compressors, and pump using air bearing technique. Starting of high speed motor can cause step out, stall, oscillation of motor because the phase inductance is much smaller than that of ordinary motor. This paper studied on the starting characteristic of variable speed centrifugal chiller considering high speed motor characteristics. Finally, the superiority of the inverter is verified by experimental results.

  • PDF

Effects of inlet working condition and heat load on supercritical CO2 compressor performance

  • Jinze Pei;Yuanyang Zhao;Mingran Zhao;Guangbin Liu;Qichao Yang;Liansheng Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2812-2822
    • /
    • 2023
  • The supercritical carbon dioxide (sCO2) Brayton power cycle is more effective than the conventional power cycle and is more widely applicable to heat sources. The inlet working conditions of the compressor have a higher influence on their operating performance because the thermophysical properties of the CO2 vary dramatically close to the critical point. The flow in the sCO2 compressor is simulated and the compressor performance is analyzed. The results show that the sCO2 centrifugal compressor operates outside of its intended parameters due to the change in inlet temperature. The sCO2 compressor requires more power as the inlet temperature increases. The compressor power is 582 kW when the inlet temperature is at 304 K. But the power is doubled when the inlet temperature increases to 314 K, and the change in the isentropic efficiency is within 5%. The increase in the inlet temperature significantly reduces the risk of condensation in centrifugal compressors. When the heat load of the sCO2 power system changes, the inlet pressure to the turbine can be kept constant by regulating the rotational speed of compressors. With the increase in rotational speed, the incidence loss and condensation risk increase.

A Study on the Instabilities of the Centrifugal Compressor with Variable Diffuser (가변 디퓨저를 장착한 원심 압축기 불안정성 연구)

  • Cha, Bong-Jun;Im, Byeong-Jun;Yang, Su-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1123-1131
    • /
    • 2002
  • An experimental study on the performance and instability development characteristics of a centrifugal compressor equipped with a cambered variable diffuser has been performed with varying diffuser vane angles. The test was conducted at the design speed of 20,800 rpm and the 80% design speed of 16,640 rpm for 5 diffuser angles : 65$^{\circ}$, 70$^{\circ}$, 75$^{\circ}$, 77.5$^{\circ}$, 80$^{\circ}$ The steady performance test results showed that choking mass flow rate decreases and total pressure ratio increases with a narrowed surge margin as the diffuser vane angle increases. Unsteady pressures were measured using high-frequency pressure transducers at the inducer and the diffuser throat to investigate the instability phenomena such as rotating stall and surge inside the compressor. From the unsteady measurements, it is found that the transient process from rotating stall to surge was mainly affected by diffuser angles. The results of the present study can be applied to the instability control of the centrifugal compressors using a variable diffuser.

Study on performance prediction of centrifugal compressor with diffuser angle and rotational speed change (원심압축기의 디퓨져 각도조절과 회전수변경에 따른 성능예측에 관한 연구)

  • Park, Y.H.;Shim, Y.H.;Kim, C.S.;Cho, S.Y.
    • Journal of Power System Engineering
    • /
    • v.16 no.5
    • /
    • pp.55-62
    • /
    • 2012
  • Centrifugal compressors are widely used and each operating condition is different. However, it cannot be manufactured according to the every operating condition. In the this study, performance of compressor was evaluated with various rotational speeds of impeller and various stagger angles of diffuser in order to apply a typical model widely. A centrifugal compressor was designed and manufactured based on the design point. On this machines, an experiment was conducted and the performance was predicted at off-design point. The performance prediction was validated with the experimental result and the numerical result. Although the isentropic efficiency on the prediction was slightly lower than that on the experimental result due to the heat loss in the experiment, the pressure ratio was predicted well and also the predicted results were matched well with the numerical results. When the rotational speed of the impeller and the stagger angle of the diffuser were changed together, the compressor can be worked in the high efficiency region and avoided operating in the stall region.

An Experimental Study on the Rotating Stall in Vaneless Diffuser of Centrifugal Blower with Radial Type Impeller (반경류형 회전차를 가진 원심송풍기의 깃이 없는 디퓨저 내의 선회실속에 관한 실험적 연구)

  • Kim, Jin Hyoung;Cho, Kang Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1247-1254
    • /
    • 1998
  • The vaneless diffusers are widely used in industrial centrifugal compressors which are required to operate within a wide flow range. When very high pressure gases are handled by centrifugal compressor. rotating stall is a serious problem because of the occurance of large aerodynamic exciting forces. Rotating stall mostly often occurs in the impellers but it can occur in vaneless diffusers as well. In this experimental study, the rotating stall in vaneless diffuser with radial type centrifugal impeller was measured by changing the flow rate with I-type, X-type hotwire. As the result, it was cleared which type of rotating stall of the impeller stall would occur and how many stall cells would appear relating with the flow rate. As the flow rate reduced, the propagation speed of rotating stall was reduced. But the stall cell number unchanged with respect to the flow rate.

Application of Generalized Experimental Data Correlation in Centrifugal Compressor Design (원시험 데이터 일반화를 적용한 원심압축기 설계)

  • Cho, Gyu-Sik;Kim, Jin-Han;Yang, Soo-Seok;Lee, Dae-Sung;Mileshin, Victor I.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.4 s.9
    • /
    • pp.38-43
    • /
    • 2000
  • Recently, KARI(Korea Aerospace Research Institute, Korea) and CIAM(Central Institute of Aviation Motors, Russia) have made an effort in developing a centrifugal compressor for a small gas turbine engine as part of a collaboration program. This compressor has been designed as a sub-component for an axial-centrifugal compression system for a small turbo-shaft engine aiming adiabatic efficiency higher than 0.81. The geometrical design requirement imposes restrictions to have high inlet hub-to-tip ratio and inlet swirl flow. In this study, the compressor has been designed using the generalized experimental data established from those compressors having pressure ratio of 3.7 to 5. From this generalized empirical correlation, desirable values of design parameters could be obtained. Subsequently, quasi-3D and 3D viscous flow analyses have been performed to ensure the adopted methodology. It is expected that the centrifugal compressor provides total pressure ratio of 4.89, corrected mass flow-rate of 1.64kg/sec, and adiabatic efficiency of 0.815 with inlet hub-to-tip ratio of 0.641. These relatively high total pressure ratio and inlet hub-to-tip ratio are the main distinctive features in this design. Besides, one of the main features of this centrifugal compressor is the adoption of a double-row bladed diffuser to effectively decelerate the transonic flow leaving the impeller. The compressor has been manufactured and will be tested in the near future.

  • PDF

A Sensitivity Analysis of Centrifugal Compressors Empirical Models

  • Baek, Je-Hyun;Sungho Yoon
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1292-1301
    • /
    • 2001
  • The mean-line method using empirical models is the most practical method of predicting off-design performance. To gain insight into the empirical models, the influence of empirical models on the performance prediction results is investigated. We found that, in the two-zone model, the secondary flow mass fraction has a considerable effect at high mass flow-rates on the performance prediction curves. In the TEIS model, the first element changes the slope of the performance curves as well as the stable operating range. The second element makes the performance curves move up and down as it increases or decreases. It is also discovered that the slip factor affects pressure ratio, but it has little effect on efficiency. Finally, this study reveals that the skin friction coefficient has significant effect on both the pressure ratio curve and the efficiency curve. These results show the limitations of the present empirical models, and more resonable empirical models are reeded.

  • PDF

Improving Flow Distribution in a Suction Channel for a Highly Efficient Centrifugal Compressor

  • Yagi, Manabu;Shibata, Takanori;Kobayashi, Hiromi;Tanaka, Masanori;Nishida, Hideo
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.3
    • /
    • pp.100-108
    • /
    • 2012
  • Design parameters for suction channels of process centrifugal compressors were investigated, and an optimization method to enhance stage efficiency by using the new design parameters was proposed. From results of computational fluid dynamics, the passage sectional area ratios $A_c/A_e$, $A_e/A_s$ and $A_c/A_s$ were found to be the dominant parameters for the pressure loss and circumferential flow distortion, where $A_c$, $A_e$ and $A_s$ are passage sectional areas for the casing upstream side, casing entrance and impeller eye, respectively. The Base suction channel was optimized using the new design parameters, and the Base and Optimized types were tested. Test results showed that the Optimized suction channel achieved 3.8% higher stage efficiency than the Base suction channel while maintaining the same operating range.