• Title/Summary/Keyword: Central adrenergic activity

Search Result 6, Processing Time 0.021 seconds

Effect of Testosterone on Central Noradrenergic Nervous System and LHRH (중추 노르아드레날린성 신경계 및 황체호르몬 분비 촉진호르몬에 대한 테스토스테론의 영향)

  • 고홍숙;김경진;박종세;고광호
    • YAKHAK HOEJI
    • /
    • v.35 no.4
    • /
    • pp.295-300
    • /
    • 1991
  • Ralationship between noradrenergic nervous system activity and luteinizing hormone releasing hormone(LHRH) content mediated by testosterone in hypothalamus was tested. Three groups of adult male animals were prepared; (1) Intact; (2) Castration+Vehicle (Cast+V); (3) Castration+Testosterone (Cast+T). Silastic capsule containing vehicle or testosterone was implanted into neck region of animals two weeks following castration. Norepinephrine content, alpha-adrenergic receptor binding characteristics using H$^{3}$-WB4101, and content of LHRH by LHRH RIA procedure were determined. Testosterone replacement to castrated male rats augmented the content of norepinephrine and LHRH. Testosterone replacement increased the alpha-adrenergic receptor density but did not change alpha-receptor affinity. The data from the present study suggest that increase in LHRH content by testosterone may be positively coupled to the activity of central noradrenergic nervous system.

  • PDF

The Role of Central Adrenergic Activity in Stress-induced Ulcerogenesis (스트레스성 궤양발생에 대한 중추 아드레날린성 활성도의 역할)

  • Kim, Dong-Goo;Ko, Chang-Mann;Kyung, Choon-Ho;Hong, Sa-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.23 no.2
    • /
    • pp.87-94
    • /
    • 1987
  • The role of central adrenergic activity in the genesis of stress ulcers was investigated by intracerebroventricular (i.c.v.) administration of catecholamines and clonidine in pylorus-ligated rats restrained for 4 hours at a temperature of $4^{\circ}C$. 1. The stress-induced ulceration was markedly decreased by the i.c.v. administration of norepinephrine, epinephrine, dopamine or low dose of clonidine. 2. After an i.c.v. administration of norepinephrine or epinephrine, the volume of gastric juice, and both acid and pepsin secretion were markedly decreased. 3. Dopamine or a low dose of clonidne decreased the volume of gastric juice and acid secretion but did not affect pepsin secretion. 4. Isoproterenol caused a decrease in the volume of gastric juice and acid secretion, however, the ulcerogenesis was similar to that of the control. 5. Gastric function as well as ulcerogenesis was little affected by a high dose of clonidine. From the above results, it is suggested that central adrenergic activation inhibits cold-restraint induced ulcerogenesis via adrenergic alpha and dopaminergic receptors, and that this effect may be mediated by a decrease in gastric acid secretion. It is also suggested that other factors may be involved in this antiulcerogenic effect.

  • PDF

Xylazine-induced depression and its antagonism by α-adrenergic blocking agents (Xylazine의 진정효과와 α-adrenergic 수용체 봉쇄약물의 길항효과)

  • Kim, Chung-hui;Hah, Dae-sik;Kim, Yang-mi;Kim, Jong-shu
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.1
    • /
    • pp.71-80
    • /
    • 1993
  • The central nervous system depressant effect of xylazine and xylazine-ketamine was studied in chicken and mice. Intraperitoneal injection of xylazine(1~30 mg/kg) and xylazine(1~30 mg/kg)-ketamine(100 mg/kg) induced a loss of the righting reflex in chicken and mice, respectively. These effects of xylazine were dose-dependent. The results obtained were as follows; 1. The effect of xylazine-induced depression was antagonized by adrenergic antagonists having ${\alpha}_2$-blocking activity(yohimbine, tolazoline, piperoxan and phentolamine). 2. Yohimbine was most effective in the reduction of the CNS depression by xylazine. 3. Phenoxybenzamine and prazosin did not reduced CNS depression by xylazine in both species. 4. Labetalol (${\alpha}_1$, ${\beta}_1$-adrenergic antagonist) and propranolol(${\beta}$-adrenergic blocking agent) were not effective in reducing xylazine induced depression. 5. Cholinergic blocking agents (atropine and mecamylamine), a dopaminergic antagonist (Haloperidol), a histamine $H_1$-antagonist(chlorpheniramine), a histamine $H_2$-antagonist(cimetidine), a serotonergic-histamine $H_1$ antagonist(cyproheptadine) were not effective in reducing xylazine-induced depression. 6. Xylazine-induced depression is mediated by ${\alpha}_2$-adrenergic receptors and appears not to be involved in cholinergic, dopaminergic, serotonergic or histaminergic pathways.

  • PDF

Experimental Studies on the Cardiovascular Effects of Haloperidol in Cat and Rabbit (Haloperidol 이 심혈관계에 미치는 영향)

  • Ahn, Young-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.11 no.2
    • /
    • pp.19-27
    • /
    • 1975
  • Haloperidol, a butyrophenone, was synthetized by Janssen and introduced for the treatment of psychosis. Although structurally different from the phenothiazines, the butyrophenones share many of their pharmacological properties, such as inhibition of conditioned avoidance response, blocking effect of amphetamine reaction, producing catalepsy, antishock effect and protection against the lethal effects of catecholalmines. Chlorpromazine can lower the arterial blood pressure through its adrenergic blocking activity, its direct effect in relaxing vascular smooth muscle, its direct effect in depressing the myocardium and its action in a complex manner on the central nervous system. In the case of haloperidol, however, was not clarified the mechanism of lowering the blood pressure. The present paper describes the effects of haloperidol on cardiovascular system to investigate the mechanisms of its actions on the arterial blood pressure. The results are followings; 1. In anesthetized cats, intravenous administration of haloperidol and chlorpromazine in the dose of 0.1mg/kg produced a slight decrease in the blood pressure, which followed by complete recovery within $30{\sim}60$ minutes. In the dose of 3mg/kg, however, both produced an abrupt and marked decrease of the blood pressure, which followed by delayed recovery. 2. Haloperidol in the dose ranges of 0.1mg to 3.0mg/kg tended to produce the heart rate slowing in the cats, while chlorpromazine has no effect on the rate. 3. Following administration of haloperidol or chlorpromazine, epinephrine reversal in the arterial blood pressure was observed in the cat, however the responses of norepinephrine and acetylcholine were little affected. 4. In the isolated rabbit atrium the contractility was depressed by haloperidol in the doses over 0.5mg per 100ml, but the rate was not affected. In contrast, the epinephrine-induced contractility was not depressed after haloperidol treatment. However, the increased rate of atrium by epinephrine was partially blocked after haloperidol. 5. In the isolated rabbit aortic strip, epinephrine-induced contraction was blocked by haloperidol. With the above results, it may be concluded that the hypotensive effect of haloperidol was largely due to ${\alpha}$-adrenergic blocking properties and the direct effect in depressing the myocardium as well as its action on central nervous system.

  • PDF

Influence of Thyroxine on the Hepatotoxicity of Carbon Tetrachloride ($CC1_4$의 간장독작용(肝臟毒作用)에 미치는 Thyroxine의 영향(影響))

  • Hong, Ki-Sung;Cheon, Yun-Sook
    • The Korean Journal of Pharmacology
    • /
    • v.16 no.2 s.27
    • /
    • pp.31-38
    • /
    • 1980
  • Calvert et al. formulated the hypothesis that carbon tetrachloride ($CCl_4$) acted on the central nervous system to produce and intensify sympathetic discharge which resulted in anoxic necrosis of the liver. Recknagel suggested that the essential feature of $CCl_4$ hepatotoxicity depended on the cleavage of it to $CCl_3$(free radical) and the peroxidative decomposition of cytoplasmic membrane structural lipids. And there are many reports which show the increase of adrenergic activity in hyperthyroidism. In this paper, the influence of thyroxine on the hepatotexicity of carbon tetrachloride was investigated in mice. The results obtained were summarized as follows; 1) Hepatic total lipid and lipid peroxide contents were slightly decreased by L-sodium thyroxine injection(4mg/kg/day for 4days or 6days), but hepatic glycogen content was significantly decreased. 2) Hepatic total lipid and lipid peroxide contents and serum lactic dehydrogenase activity were significantly increased by $CCl_4$ (4 ml/kg single dose or triple dose: 4ml/kg/day for 3days), but hepatic glycogen content was significantly decreased. 3) The increase of hepatic total lipid and lipid peroxide contents and serum lactic dehydrogenase activity induced by $CCl_4$ were significantly inhitited by the pretreatment of thyroxine. 4) The decrease of hepatic glycogen induced by $CCl_4$ was not affected by the pretreatment of thyroxine.

  • PDF

Do Opioid Receptors Play a Role in Blood Pressure Regulation?

  • Rhee, H.M.;Holaday, J.W.;Long, J.B.;Gaumann, M.D.;Yaksh, T.L.;Tyce, G.M.;Dixon, W.R.;Chang, A.P.;Mastrianni, J.A.;Mosqueda-Garcia, R.;Kunos, G.
    • The Korean Journal of Pharmacology
    • /
    • v.24 no.2
    • /
    • pp.153-164
    • /
    • 1988
  • The potential role of endogenous opioid peptides (EOPS) in cardiovascular regulation has only recently been entertained. EOPS have been localized in brain, spinal cord, autonomic ganglia, particularly the adrenal gland, and many other peripheral tissues. There are at least five major types of opioid receptors; namely ${\mu},\;{\delta},\;k,\;{\sigma},\;and\;{\varepsilon}$ and Experimental evidence indicates that cardiovascular actions of the peptide are mediated primarily by ${\mu},\;{\delta}$ and k receptors, and that these receptor types may be allosterically coupled. In anesthetized rabbits met-enkephalin decreased blood pressure and heart rate, which closely paralleled a reduction in sympathetic discharge. Naloxone, but not naloxone methobromide, antagonized these effects, which suggests a central site of action of met-enkephalin. A number of autonomic agents, particularly adrenergic ${\alpha}$-and, ${\beta}-agonists$ and antagonists modify the cardiovascular actions of met-enkephalin. Experiments in reserpine-treated and adrenalectomized rats provide no evidence of sympathetic nervous system involvement in the pressor responses to intravenous injection of opioid peptides, but rather suggest a direct peripheral action. Finally, activation of a beta-endorphinergic pathway projecting from the arcuate nucleus to the nucleus tractos solitarii in rats can cause naloxone reversible hypotension and bradycardia. There is evidence to implicate this pathway in antihypertensive drug action and in the modulation of baroreflex activity.

  • PDF