• Title/Summary/Keyword: Central Contour Model

Search Result 20, Processing Time 0.03 seconds

DEVELOPMENT OF AN ORTHOGONAL DOUBLE-IMAGE PROCESSING ALGORITHM TO MEASURE BUBBLE VOLUME IN A TWO-PHASE FLOW

  • Kim, Seong-Jin;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.313-326
    • /
    • 2007
  • In this paper, an algorithm to reconstruct two orthogonal images into a three-dimensional image is developed in order to measure the bubble size and volume in a two-phase boiling flow. The central-active contour model originally proposed by P. $Szczypi\'{n}ski$ and P. Strumillo is modified to reduce the dependence on the initial reference point and to increase the contour stability. The modified model is then applied to the algorithm to extract the object boundary. This improved central contour model could be applied to obscure objects using a variable threshold value. The extracted boundaries from each image are merged into a three-dimensional image through the developed algorithm. It is shown that the object reconstructed using the developed algorithm is very similar or identical to the real object. Various values such as volume and surface area are calculated for the reconstructed images and the developed algorithm is qualitatively verified using real images from rubber clay experiments and quantitatively verified by simulation using imaginary images. Finally, the developed algorithm is applied to measure the size and volume of vapor bubbles condensing in a subcooled boiling flow.

A STUDY OF INTRAORAL ANATOMIC LANDMARKS OF KOREAN ADULT-UPPER JAW (성인 유치악자 상악골의 악궁과 치열궁의 형태에 관한 조사)

  • Oh, Yu-Ree;Lee, Sung-Bok;Park, Nam-Soo;Choi, Dae-Gyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.4
    • /
    • pp.753-768
    • /
    • 1995
  • For accurate impression taking of dental patient and esthetic denture treatment of ednetulous patient, measuring between intraoral anatomic landmarks is useful.In this study the subjects selected at a random were two-jundred forty persons with a mean age 22.5(range 21-24) and were taken impression of by irreversible hydrocolloid impression material(Alginate). On the study model made by dental stone, each individual tray was made and final impresion was taken by border moilding. On final model measurings were performed with 3-dimensional measuring device and the values were analyzed by t-test The results is following : ABOUT THE MEASURED VALUES. 1. The width between maxillary right and left canine cusp tip was average 36.44mm(s.d. 2.48), man 36.67mm, woman 35.83mm(p<0.05). 2. The width between labial height of contour of maxillary right and left canine was average 40.08mm(s.d. 2.42), man 40.29mm, woman 39.52mm(p<0.05). 3. The width between mesio-lingual cusps of maxillary first molar was average 43.14mm(s.d. 3.33), man 43.56mm, woman 42.05mm(p<0.05). 4. The width between buccal alveolar ridge on axis of mesiolingual cusp of right and left maxillary first molar was average 64.89mm(s.d. 3.88), man 65.58mm, woman 62.92mm(p<0.05). 5. The width between buccal alveolar ridge on axis of mesiolingual cusp of right and left maxillary second molar was average 68.58mm(s.d. 3.91), man 69.29mm, woman 66.30mm (p<0.05). 6. The width between right and left hamular notch was average 49.80mm(s.d. 3.96), man 50.70mm, woman 48.20mm(p<0.05). 7. The length from labial heigth of contour of maxillary central incisor to center of incisive papilla was average 9.52mm(s.d. 1.18), man 9.46mm, woman 9.63mm(p>0.05). 8. The length from labial heigth of contour of maxillary central incisor to palatine fovea was average 53.27mm(s.d. 2.93), man 53.93mm, woman 52.08mm(p<0.05). 9. The center of incisive papilla ws located posterior to intercanine line at 0.40mm(s.d. 1.16), man 0.51mm, woman 0.11mm(p<0.05). 10. The height from incisal edge of maxillary central incisor to the labial vestibule was average 21.84mm(s.d. 1.38), man 22.01mm, woman 21.00mm(p<0.05). 11. The height from mesiolingual cusp of maxillary first molar to buccalvestible was average 17.45mm(s.d. 1.42), man 17.56mm, woman 17.08mm(p>0.05). 12. The height from hamular notch to standard occlusal plane was average 6.84mm(s.d. 1.06), man 6.91mm, woman 6.70mm(p>0.05). 13. The height from the deepest point of palatal vault to standard occlsalplane was average 19.95 mm(s.d. 2.03), man 20.19mm, woman 19.12mm(p<0.05). ABOUT THE ARCH FORM 1. The arch form was able to classify into four typr by the rate of the measured values. Each arch form distribution was that the 1 group had 32.46% the 2 group 2.19%, the 3 group 52.83%, the 4 group 12.72%. The sexual composition was that in 1 group man had 73.5%, woman 26.5%, in 2 group man had 40.0%, woman 60.0%, in 3 group man had 83.3%, woman 16.7%, and in 4 group man had 55.17%, woman 44.83%. 2. When canine cusp tip was marked as point O, the intersection point between labial height of contour of maxillary central incisor and intermaxillary suture as point A, height of contour of maxillary second molar buccal alveolar ridge as B point, ${\angle}$AOB was measured $133.8^{\circ}$for the 1 group, $133.0^{\circ}$for the 2 group, $132.3^{\circ}$for the 3 group, $128.9^{\circ}$for the 4 group.

  • PDF

Surface roughness model of end-milling surface (엔드밀 가공면의 표면거칠기 모델)

  • Chin, Do-Hun;Kim, Jong-Do;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.2
    • /
    • pp.68-74
    • /
    • 2013
  • In this paper, an average surface roughness, $R_a$, was measured by optical measurement and its mathematical model according to spindle speed and feedrate was obtained by least square method. Also, its result is compared and investigated with real measured average surface roughness. The optical measurement of surface roughness is performed by CLSM(confocal laser scanning microscope) and the captured HEI(height encoded image) data is used as an original data for the generation of average surface roughness and its mathematical plane or contour surface of surface roughness. Using this polynomial model with two independent variables, the behavior of an average surface roughness is investigated and analyzed with an experimental modeling of least square algorithm. And it can be used for the prediction of $R_a$ in different condition of machining.

Development of Cationic Dyeable Polyamide Substrates by Pretreatment with Synthetic Tanning Agent: Statistical Optimization and Analysis

  • Son, Young-A;Ravikumar, K.;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.21 no.5
    • /
    • pp.41-50
    • /
    • 2009
  • Design of experiments (DoE) concept was successfully applied to determine the optimum processing conditions that yield maximum % exhaustion for berberine interaction with synthetic tanning agent pretreated polyamide substrates. The potential of synthetic tanning agent to provide anionic sites on the polyamide for berberine interaction which is cationic in nature was tested to increase the % exhaustion of berberine in this article. Experiments were designed according to Central Composite Rotatable Design (CCRD). The three factors for synthetic tanning agent pretreatment and two factors for berberine interaction each at five different levels, including central and axial points were considered. Experiments were conducted in a laboratory scale infra-red treatment instrument according to CCRD. For each response, second order polynomial models were developed using multiple linear regression analysis incorporating linear, interactions and squared effects of all variables and then optimized. The significance of the mathematical model developed was ascertained using Excel regression (solver) analysis module. Analysis of variance (ANOVA) was performed to check the adequacy and accuracy of the fitted models. The response surfaces and contour maps showing the interaction of process variables were constructed. Applying Monte Carlo simulation, response surface and contour plots, optimum operating conditions were found and at this optimum point, % exhaustion of 81% and 74% respectively for synthetic tanning agent pretreatment and berberine interaction were observed and subsequently the results were experimentally investigated.

Optimization for the Sugaring Process of Yam for Snack Food Using Response Surface Methodology (마스낵 제조를 위한 당절임 공정의 최적화)

  • 한주영;김남우;황성희;윤광섭;신승렬
    • Food Science and Preservation
    • /
    • v.10 no.3
    • /
    • pp.320-325
    • /
    • 2003
  • This study was conducted to optimize sugaring process of yam for development of new snack product and enhancement acceptability. Three variables by five level central composite design and response surface methodology were used to determine optimum conditions for sugaring time, temperature and concentration. Optimization of the process was conducted using the combination of the moisture content, solid content, color and rehydration ratio. The regression polynomial model was suitable (P>0.05) model by Lack-of-Fit analysis with highly significant. To optimize the process, based on surface response and contour plots, superimposing the individual contour plots for the response variables. The optimum conditions for this process were 5.5 hours and 58% at 40$^{\circ}C$ under the optimum of restricted variables as moisture content was 66 to 70, solid content was 25 to 30%, L value was above 75, a value was -2.1 to -2.4, b value was above 5 and rehydration ratio was 200 to 250.

3D-QSAR, Docking and Molecular Dynamics Simulation Study of C-Glycosylflavones as GSK-3β Inhibitors

  • Ghosh, Suparna;Keretsu, Seketoulie;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.13 no.4
    • /
    • pp.170-180
    • /
    • 2020
  • Abnormal regulation, hyperphosphorylation, and aggregation of the tau protein are the hallmark of several types of dementia, including Alzheimer's Disease. Increased activity of Glycogen Synthase Kinase-3β (GSK-3β) in the Central Nervous System (CNS), increased the tau hyperphosphorylation and caused the neurofibrillary tangles (NFTs) formation in the brain cells. Over the last two decades, numerous adenosine triphosphate (ATP) competitive inhibitors have been discovered that show inhibitory activity against GSK-3β. But these compounds exhibited off-target effects which motivated researchers to find new GSK-3β inhibitors. In the present study, we have collected the dataset of 31 C-Glycosylflavones derivatives that showed inhibitory activity against GSK-3β. Among the dataset, the most active compound was docked with the GSK-3β and molecular dynamics (MD) simulation was performed for 50 ns. Based on the 50 ns MD pose of the most active compound, the other dataset compounds were sketched, minimized, and aligned. The 3D-QSAR based Comparative Molecular Field Analysis (CoMFA) model was developed, which showed a reasonable value of q2=0.664 and r2=0.920. The contour maps generated based on the CoMFA model elaborated on the favorable substitutions at the R2 position. This study could assist in the future development of new GSK-3β inhibitors.

A Study On Prediction Model of Cutting Conditions for Draft Angle Control (마이크로금형 구배각 제어를 위한 절삭가공조건 예측모델에 관한 연구)

  • Cho, Ji-Hyun;Song, Byeong-Uk;Seo, Tae-Il
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.387-393
    • /
    • 2012
  • It is very difficult to determine suitable cutting conditions in order to obtain accurate cutting profiles because machining errors caused by tool deflection depend upon cutting conditions. In this study the relationship between real cutting profiles (inclined shapes and machining errors) and cutting conditions was modeled in order to fabricate draft angle on micro molds. CCD (Central Composite Design) of DOE (Design Of Experiment) and RSM (Response Surface Method) were applied in order to model the relationship between cutting conditions and machining errors. In order to use CCD the range of radial depth of cut was chosen by $10-90{\mu}m$ and the range of feedrate was chosen by 200-300mm/min, and 9 points of cutting conditions were chosen inside determined ranges. Then, actual cutting processes were carried out as respect to 9 points of cutting conditions, draft angles and real cutting profiles were measured on cutting profiles, each response surface function was determined by conducting response surface analysis and the functions were represented by 3-dimensional graphs, contour lines and $101{\times}101$ matrices. Consequently it is possible to determine suitable cutting conditions in order to obtain arbitrary given draft angles and cutting profiles by using modeling. To validate proposed approach in this study suitable cutting conditions were determined by modeling in order to obtain arbitrary given draft angle and cutting profile, and actual cutting processes were carried out. About 95% of good agreement between predicted and measured values was obtained.

Optimization for the Salting Process of Eggplant(Chukyang) for Export Using Response Surface Methodology (수출용 축양품종 가지의 염절임 공정의 최적화)

  • 남학식;김남우;황성희;윤광섭;신승렬
    • Food Science and Preservation
    • /
    • v.10 no.3
    • /
    • pp.314-319
    • /
    • 2003
  • This study was conducted to the optimize salting process of eggplant for development new product and enhancement quality for export. Three variables by five level central composite design and response surface methodology were used to determine optimum conditions for salting time, temperature and salt concentration. Optimization of the process was conducted using the combination of the moisture content, salinity and color of surface and inside of salted eggplant. The regression polynomial model was suitable (P>0.05) by Lack-of-Fit analysis with highly significant. To optimize the process, based on surface response and contour plots, the individual contour plots of the response variables were superimposed. The optimum conditions for this process were 6 days and 15$^{\circ}C$ at 30% concentration under the optimum of restricted variables as moisture content was below 84%, salinity was below 14%, L and b value of surface were 10 to 20 and below 0, L value and b value of inside were 70 to 75 and 16 to 18.

Application of Response Surface Method as an Experimental Design to Optimize Coagulation Tests

  • Trinh, Thuy Khanh;Kang, Lim-Seok
    • Environmental Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.63-70
    • /
    • 2010
  • In this study, the response surface method and experimental design were applied as an alternative to conventional methods for the optimization of coagulation tests. A central composite design, with 4 axial points, 4 factorial points and 5 replicates at the center point were used to build a model for predicting and optimizing the coagulation process. Mathematical model equations were derived by computer simulation programming with a least squares method using the Minitab 15 software. In these equations, the removal efficiencies of turbidity and total organic carbon (TOC) were expressed as second-order functions of two factors, such as alum dose and coagulation pH. Statistical checks (ANOVA table, $R^2$ and $R^2_{adj}$ value, model lack of fit test, and p value) indicated that the model was adequate for representing the experimental data. The p values showed that the quadratic effects of alum dose and coagulation pH were highly significant. In other words, these two factors had an important impact on the turbidity and TOC of treated water. To gain a better understanding of the two variables for optimal coagulation performance, the model was presented as both 3-D response surface and 2-D contour graphs. As a compromise for the simultaneously removal of maximum amounts of 92.5% turbidity and 39.5% TOC, the optimum conditions were found with 44 mg/L alum at pH 7.6. The predicted response from the model showed close agreement with the experimental data ($R^2$ values of 90.63% and 91.43% for turbidity removal and TOC removal, respectively), which demonstrates the effectiveness of this approach in achieving good predictions, while minimizing the number of experiments required.

Optimization of MOF-801 Synthesis Using Sequential Design of Experiments (순차적 실험계획법을 이용한 MOF-801 합성공정 최적화)

  • Lee, Min Hyung;Yoo, Kye Sang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.621-626
    • /
    • 2021
  • A sequential design of experiments was used to optimize MOF-801 synthesis process. For the initial screening, a general 2k factorial design was selected followed by the central composition design, one of the response surface methods. A 23 factorial design based on the molar ratio of fumaric acid, dimethylformamide (DMF), and formic acid was performed to select the more suitable response variable for the design of experimental method among the crystallinity and BET specific surface area of MOF-801. After performing 8 synthesis experiments designed by MINITAB 19 software, the characteristic analysis was performed using XRD analysis and nitrogen adsorption method. The crystallinity with R2 = 0.999 was found to be more suitable for the experimental method than that of BET specific surface area. Based on analysis of variance (ANOVA), it was confirmed that the molar ratio of fumaric acid and formic acid was a major factor in determining the crystallinity of MOF-801. Through the response optimization and contour plot of two factors, the optimal molar ratio of ZrOCl2·8H2O : fumaric acid : DMF : formic acid was 1 : 1 : 39 : 35. In order to optimize the synthesis process, the central composition design on synthesis time and temperature was performed under the identical molar ratio of precursors. The results derived through the designed 9 synthesis experiments were calculated using the quadratic model equation. Thus, the maximum crystallinity of MOF-801 predicted under the synthesis time and temperature of 7.8 h and 123 ℃, respectively.