• Title/Summary/Keyword: Central Composite Method

Search Result 294, Processing Time 0.025 seconds

Effect of crack location on buckling analysis and SIF of cracked plates under tension

  • Memarzadeh, Parham;Mousavian, Sayedmohammad;Ghehi, Mohammad Hosseini;Zirakian, Tadeh
    • Steel and Composite Structures
    • /
    • v.35 no.2
    • /
    • pp.215-235
    • /
    • 2020
  • Cracks and defects may occur anywhere in a plate under tension. Cracks can affect the buckling stability performance and even the failure mode of the plate. A search of the literature reveals that the reported research has mostly focused on the study of plates with central and small cracks. Considering the effectiveness of cracks on the buckling behavior of plates, this study intends to investigate the effects of some key parameters, i.e., crack size and location as well as the plate aspect ratio and support conditions, on the buckling behavior, stress intensity factor (SIF), and the failure mode (buckling or fracture) in cracked plates under tension. To this end, a sophisticated mathematical code was developed using MATLAB in the frame-work of extended finite element method (XFEM) in order to analyze the buckling stability and collapse of numerous plate models. The results and findings of this research endeavor show that, in addition to the plate aspect ratio and support conditions, careful consideration of the crack location and size can be quite effective in buckling behavior assessment and failure mode prediction as well as SIF evaluation of the cracked plates subjected to tensile loading.

Studies on CFST column to steel beam joints using endplates and long bolts under central column removal

  • Gao, Shan;Yang, Bo;Guo, Lanhui;Xu, Man;Fu, Feng
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.161-172
    • /
    • 2022
  • In this paper, four specimens of CFST column joints with endplates and long bolts are tested in the scenario of progressive collapse. Flush endplate and extended endplate are both adopted in this study. The experimental results show that increasing the thickness of the endplate could improve the behavior of the joint, but delay the mobilization of catenary action. The thickness of the endplate should not be relatively thick in comparison to the diameter of the bolts, otherwise catenary action would not be mobilized or work effectively. Effective bending deformation of the endplate could help the formation and development of catenary action in the joints. The performance of flexural action in the joint would affect the formation of catenary action in the joint. Extra middle-row bolts set at the endplates and structural components set below the bottom beam flange should be used to enhance the robustness of joints. A special weld access hole between beam and endplate should be adopted to mitigate the chain damage potential of welds. It is suggested that the structural components of joints should be independent of each other to enhance the robustness of joints. Based on the component method, a formula calculating the stiffness coefficient of preloaded long bolts was proposed whose results matched well with the experimental results.

Response Optimization for the Preparation of MIL-100(Fe)@COF Materials Using Design of Experiments

  • Min Hyung Lee;Sangmin Lee;Kye Sang Yoo
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.455-459
    • /
    • 2023
  • Three different optimization studies were conducted for the synthesis of MIL-100(Fe) and MIL-100(Fe)@COF using design of experiments. In the first study, the optimal concentration of precursors was determined using a mixture design method, and a modified molar ratio of 0.4155:0.2664:0.3182 was found to yield the highest crystallinity. In the second study, a central composite design was used to optimize the main factors of synthesis temperature and time with a synthesis temperature of 161℃ and a synthesis time of 12 hours. In the third study, a screening design method was used to determine the effect of five precursors on the formation of MIL-100(Fe)@COF, and the presence of characteristic peaks at 1552, 1483, and 1354 cm-1 was found to be important for the existence of the COF structure. MIL-100(Fe)@COF synthesized with a modified molar ratio of 0.4831:0.4169:0.1 was predicted to exhibit optimal conditions.

Calculation method and application of natural frequency of integrated model considering track-beam-bearing-pier-pile cap-soil

  • Yulin Feng;Yaoyao Meng;Wenjie Guo;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.81-89
    • /
    • 2023
  • A simplified calculation method of natural vibration characteristics of high-speed railway multi-span bridge-longitudinal ballastless track system is proposed. The rail, track slab, base slab, main beam, bearing, pier, cap and pile foundation are taken into account, and the multi-span longitudinal ballastless track-beam-bearing-pier-cap-pile foundation integrated model (MBTIM) is established. The energy equation of each component of the MBTIM based on Timoshenko beam theory is constructed. Using the improved Fourier series, and the Rayleigh-Ritz method and Hamilton principle are combined to obtain the extremum of the total energy function. The simplified calculation formula of the natural vibration frequency of the MBTIM under the influence of vertical and longitudinal vibration is derived and verified by numerical methods. The influence law of the natural vibration frequency of the MBTIM is analyzed considering and not considering the participation of each component of the MBTIM, the damage of the track interlayer component and the stiffness change of each layer component. The results show that the error between the calculation results of the formula and the numerical method in this paper is less than 3%, which verifies the correctness of the method in this paper. The high-order frequency of the MBTIM is significantly affected considering the track, bridge pier, pile soil and pile cap, while considering the influence of pile cap on the low-order and high-order frequency of the MBTIM is large. The influence of component damage such as void beneath slab, mortar debonding and fastener failure on each order frequency of the MBTIM is basically the same, and the influence of component damage less than 10m on the first fourteen order frequency of the MBTIM is small. The bending stiffness of track slab and rail has no obvious influence on the natural frequency of the MBTIM, and the bending stiffness of main beam has influence on the natural frequency of the MBTIM. The bending stiffness of pier and base slab only has obvious influence on the high-order frequency of the MBTIM. The natural vibration characteristics of the MBTIM play an important guiding role in the safety analysis of high-speed train running, the damage detection of track-bridge structure and the seismic design of railway bridge.

Development of Easily Chewable and Swallowable Korean Barbecue Beef for the Aged (저작·연하 용이 소불고기 노인식 개발)

  • Kim, Soojeong;Joo, Nami
    • The Korean Journal of Food And Nutrition
    • /
    • v.27 no.6
    • /
    • pp.1175-1181
    • /
    • 2014
  • This study was conducted to develop for the elderly food that is safe, well-shaped, and easy to chew and swallow, using gelification. Gelatin, which has low adhesiveness, thereby lowering the possibility of being swallowed wrongly into the respiratory track, was used as a viscosity agent for the gelification. Water and gelatin amounts were adjusted to facilitate breaking the food with the tongue. Various foods for the elderly with chewing and swallowing difficulties were used for sensory assessment. Sensory panel consisted of 10 dietitians (10 women) in nursing care facilities. The sensory optimal composite recipes were determined by central composite design (CCD). The sensory measurements were significantly different in appearance (p<0.05), saltiness (p<0.05), sweetness (p<0.01), and overall quality (p<0.05). The optimum formulation of the Korean barbecue beef calculated by numerical and graphical method was 3.71 g of sugar and 19.53 g of soy sauce. Moisture content, hardness and adhesiveness of the Korean barbecue beef were 78.85%, 2.40, -1.87, respectively. The result shows that food for the elderly, which is easy to chew and swallow, using gelification will have sufficient competitiveness in terms of safety, taste, and preference. The development of food for the elderly that take into account the difficulties in chewing and swallowing among the elderly, reflects their preference, and has sufficient nutrients, is important to enable the elderly to enjoy their meals. Also, as the Korean society is getting older, it remains one of the biggest social challenges.

The stress analysis of supporting tissues according to crown restorative materials in Brånemark osseointegrated implant (Brånemark 골유착성 매식체의 금관 수복재료에 따른 지지조직의 응력분석)

  • Jeong, Gwan-Ho;Bae, Tae Seong;Song, Kwang-Yeob;Park, Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.28 no.2
    • /
    • pp.199-215
    • /
    • 1990
  • This study was to analyze the stress distribution of implant and supporting tissue in $Br{\aa}nemark$ osseointegration implant. The analysis has been conducted by using the axisymmetric finite element method and type of model according to crown material. Tests have been performed at 1 kg load on central fossa of crown portion. Each type of model was designed differently according to crown material. 1) Porcelain fused to metal crown(Model A) 2) Composite resin veneered crown(Model B) 3) Acrylic resin veneered crown(Model C) 4) Type III gold crown(Model D) The displacements and stresses of implant and supporting structures were analyzed to investigate the influence of the type of crown material. The results were obtained as follows : 1. Displacement of implant was shown uniformly downward displacement in all models and abutments were observed distally downward displacement. 2. In supporting tissues, stress was concentrated on the crest of compact bone and the spongy bone below implant. 3. The PFM and the type III gold crown showed the largest concentration of stress at the crest of compact bone and the spongy bone below implant, respectively. Acrylic resin artificial teeth and composite resin veneered crown indicated almost the same distribution of stress. 4. The gold screw, the abutment screw and the top of abutment showed the concentration of stress in implants of every model.

  • PDF

Development of Easily Chewable and Swallowable Hot Pepper Paste Stir-Fried Pork and Seasoned Spinach for Elderly (고추장 제육볶음 및 시금치나물 저작·연하 용이 노인식 개발)

  • Kim, Soojeong;Joo, Nami
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.4
    • /
    • pp.480-485
    • /
    • 2016
  • This study was conducted to develop food for the elderly, which is easier to chew and swallow, using gelification. Various foods for the elderly with chewing and swallowing difficulties were used for sensory assessment. The sensory panel consisted of 10 dieticians (10 women) working in nursing care facilities. The sensory optimal composite recipes were determined by the central composite design (CCD). The optimum formulation of hot pepper paste stir fried pork calculated by the numerical and graphical method was 1.48 g of sugar and 18.97 g of hot pepper paste. The optimum formulation of seasoned spinach was 8.0 g of sesame oil and 5.41 g of soy sauce. Moisture content, hardness, and adhesiveness of hot pepper paste stir fried pork was 76.49%, 2.50, and -1.20, respectively. Moisture content, hardness, and adhesiveness of seasoned spinach was 83.48%, 2.27, and -1.17, respectively. This study provides the basic materials for the development of easily chewable and swallowable foods for the elderly, which can reduce the risk of food going down the wrong pipe, and the preference can be improved by eating solid food instead of porridge or liquid food. The development of food for the elderly, which takes the difficulties in chewing and swallowing among the elderly into consideration and reflects their preference and has sufficient amount of nutrients, is important to enable the elderly to enjoy their meals and it is one of the biggest challenges in Korea, as Korean society is aging rapidly.

Translucent endodontic fiber posts luted with flowable light curing composite resins

  • Park, Youn-Sik;Yang, In-Seok;Kim, Tae-Geon;Yang, Hyon;Kim, Nam-Suk;Kim, Hyun-Syeob;Roh, Hyun-Ki;Park, Mi-Ra;Oh, Won-Mann;Hwang, In-Nam
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.623-623
    • /
    • 2003
  • I. Objectives The aim of this was to evaluate the use possibility of light curing flowable composite resins as a luting agent for translucent fiber posts. II. Materials and Methods 20 single-rooted maxillary central incisors were selected and crown was sectioned below the cemento-enamel junction to obtain a 13 mm ling root. Root canals were filed, cleaned, and shaped to #40 with K-file. Prepared canals were filled with gutta percha and AH26 root canal sealer by lateral condensation method. Teeth were than divided into 4 groups of 5 specimens each. In group 1 and 2, the canal space of each root was enlarged with #3 DT Light post preparation drill (Bisco, USA) to a depth of 9mm from the cervical.(omitted)

  • PDF

Experimental design approach for ultra-fast nickel removal by novel bio-nanocomposite material

  • Ince, Olcay K.;Aydogdu, Burcu;Alp, Hevidar;Ince, Muharrem
    • Advances in nano research
    • /
    • v.10 no.1
    • /
    • pp.77-90
    • /
    • 2021
  • In the present study, novel chitosan coated magnetic magnetite (Fe3O4) nanoparticles were successfully biosynthesized from mushroom, Agaricus campestris, extract. The obtained bio-nanocomposite material was used to investigate ultra-fast and highly efficient for removal of Ni2+ ions in a fixed-bed column. Chitosan was treated as polyelectrolyte complex with Fe3O4 nanoparticles and a Fungal Bio-Nanocomposite Material (FBNM) was derived. The FBNM was characterized by using X-Ray Diffractometer (XRD), Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDS), Fourier Transform Infrared spectra (FTIR) and Thermogravimetric Analysis (TGA) techniques and under varied experimental conditions. The influence of some important operating conditions including pH, flow rate and initial Ni2+ concentration on the uptake of Ni2+ solution was also optimized using a synthetic water sample. A Central Composite Design (CCD) combined with Response Surface Modeling (RSM) was carried out to maximize Ni2+ removal using FBNM for adsorption process. A regression model was derived using CCD to predict the responses and analysis of variance (ANOVA) and lack of fit test was used to check model adequacy. It was observed that the quadratic model, which was controlled and proposed, was originated from experimental design data. The FBNM maximum adsorption capacity was determined as 59.8 mg g-1. Finally, developed method was applied to soft drinks to determine Ni2+ levels. Reusability of FBNM was tested, and the adsorption and desorption capacities were not affected after eight cycles. The paper suggests that the FBNM is a promising recyclable nanoadsorbent for the removal of Ni2+ from various soft drinks.

Evaluation of Oxalic Acid Pretreatment Condition Using Response Surface Method for Producing Bio-ethanol from Yellow Poplar (Liriodendron tulipifera) by Simultaneous Saccharification and Fermentation (바이오에탄올 생산을 위한 백합나무(Liriodendron tulipifera)칩의 동시당화발효 및 Response Surface Method를 이용한 옥살산 전처리 조건 탐색)

  • Kim, Hye-Yun;Lee, Jae-Won;Jeffries, Thomas W.;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.75-85
    • /
    • 2011
  • The main purpose of this study is to evaluate the potential of producing bioethanol from yellow poplar ($Liriodendron$ $tulipifera$) wood chips by oxalic acid pretreatment and to examine the pretreatment conditions by response surface methodology (RSM). Based on $2^3$ factorial design, adjusted variables were reaction temperature ($^{\circ}C$), residence time (min), and acid loading (g/g), and a series of distinct 15 experimental conditions was organized with duplication at central point (total 16 performances). After pretreatment, simultaneous saccharification and fermentation (SSF) was subjected on solid fraction with yeast strain $Pichia$ $stipitis$. Maximum ethanol yields of the most samples were measured at 72 hours and applied to RSM as a dependent variable. 9.7 g/${\ell}$ of ethanol was produced from the solid pretreated at $180^{\circ}C$ for 40 min with 0.013 g/g of oxalic acid loading. According to the response surface methodology, it was determined that the temperature is the most governing factor via statistic analysis.