• Title/Summary/Keyword: Center cut

Search Result 943, Processing Time 0.024 seconds

A Case Study of the New Center-Cut Method in Tunnel : SAV-Cut(Stage Advance V-Cut) (터널 심발발파공법 SAV-Cut(Stage Advance V-Cut)의 특징 및 현장적용 사례 연구)

  • Kim, Dong-Hyun;Lee, Sang-Pil;Lee, Hun-Yeon;Lee, Tae-Ro;Jeon, Seok-Won
    • Explosives and Blasting
    • /
    • v.25 no.1
    • /
    • pp.31-43
    • /
    • 2007
  • In most tunnel constructions in South Korea, blasting has been widely used as an excavation method. In tunnel blasting, the center-cut to induce first free surface is very important for enhancing excavation efficiency and reducing vibration caused by exploding. This paper introduces new center-cut method named SAV-cut (Stage Advance V-cut) developed on the concept of V-cut. Significant features of SAV-cut are the center hole and stepwise ignition. Many field tests and numerical analysis were carried out to analyze the mechanical behavior and blasting vibration. From the results, the newly developed SAV-cut was proved as an effective center-cut method for both increasing blasting efficiency and decreasing blasting vibration.

A Comparison of Ground Vibration in Center Cut Blasting using Artificial Joints (인공절리를 이용한 심발 발파에서의 지반진동 비교)

  • Park, Hoon;Suk, Chul-Gi;Noh, You-Song
    • Explosives and Blasting
    • /
    • v.36 no.4
    • /
    • pp.16-25
    • /
    • 2018
  • In order to reduce ground vibration during tunnel excavation, a free surface blasting method has been applied in which a partial free surface is formed on the excavation surface and controlled blasting is performed. In this study, the ground vibration reduction due to artificial joints was evaluated by forming artificial joints on center cut using diamond wire saw and comparing the ground vibration caused by center cut blasting. As a result of comparison, ground vibration was reduced by artificial joints center cut blasting more than normal center cut blasting, and the ground vibration reduction effect of horizontal artificial joints center cut blasting was evaluated more than that of vertical artificial joint center cut blasting.

Analysis on difference of consumer's evaluation on visual features of pork cuts

  • Lee, Yee Eun;Lee, Hyun Jung;Kim, Minsu;Yoon, Ji Won;Ryu, Minkyung;Jo, Cheorun
    • Journal of Animal Science and Technology
    • /
    • v.63 no.3
    • /
    • pp.614-625
    • /
    • 2021
  • This study investigates how visual appearance of pork cuts affects consumer preference. Images of pork belly, Boston butt, and loin were chosen on the basis of visible fattiness and used to analyze consumers' perception of the appearance of each pork cut. Meat color and visible fat proportion of images of pork cuts were analyzed by the researchers before conducting the survey. A total of 211 pork eaters evaluated the pork cuts based on appearance (lightness of color, redness, visible fat proportion, and fat distribution), preferability, and overall acceptability. Also, muscle pieces from different pork cuts were taken and the relative area composition of muscle fibers was measured. Based on survey results, correlation between visual traits and preferences of each pork cut was analyzed. The survey results showed that preferred pork appearance varied as per each individual's favorite pork cut. Also, the respondents evaluated visual characteristics and preference for each pork cut differently possibly due to the different visual characteristics of each cut. Correlation analysis between visual traits and preference indicated that overall acceptability of pork cuts was mainly influenced by fat preference, followed by color preference. Fat and color preferences for each pork cut were affected by various visual attributes including redness, lightness of color, visible fat proportion, and fat distribution, but their effects were considerably varied among different pork cuts. Thus, Korean consumers perceived and assessed pork appearance using various quality cues but the evaluation depended on which cut was being observed.

Effect of Cut-off Intervals on Nutrients Removal Efficiency in Hydrophytes at the Artificial Vegetation Island (인공수초재배섬에서 수생식물 지상부 절취주기별 수중영양염류 제거효율)

  • Park, Hae-Kyung;Byeon, Myeong-Seop;Choi, Myung-Jae;Yun, Seok-Hwan;Jeon, Nam-Hui
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.221-226
    • /
    • 2009
  • We investigated the most effective cutting interval for underwater nutrient removal through cut off the emergent part of hydrophytes at artificial vegetation island (AVR) which was installed for the purpose of water quality improvement in Lake Paldang. We divided the planting area of Phragmites japonica into three parts according to the cutting intervals. The shoot height and relative growth rate of P. japonica, nutrient contents and biomass of cut off P. japonica were measured at each cutting interval. The amount of nutrients which were removed through cut off at each cutting interval was calculated. P. japonica showed full growth, 80% and 60% of full growth before first cut off at three-months, two-months and one-month cutting interval condition respectively. Three-month cutting interval condition showed the largest biomass of cut off P. japonica and one-month cutting interval condition showed the least. However the cut off P. japonica showed the highest content of nutrients at one-month cutting interval condition and the least at three-month cutting interval condition. The amount of phosphorus and nitrogen removal at two-month cutting off condition is the largest among three cutting interval conditions indicating that cut off the emergent part of P. japonica every two months is the most effective to remove the nutrients from water at AVR in eutrophic lakes.

A Fully Differential RC Calibrator for Accurate Cut-off Frequency of a Programmable Channel Selection Filter

  • Nam, Ilku;Choi, Chihoon;Lee, Ockgoo;Moon, Hyunwon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.682-686
    • /
    • 2016
  • A fully differential RC calibrator for accurate cut-off frequency of a programmable channel selection filter is proposed. The proposed RC calibrator consists of an RC timer, clock generator, synchronous counter, digital comparator, and control block. To verify the proposed RC calibrator, a six-order Chebyshev programmable low-pass filter with adjustable 3 dB cut-off frequency, which is controlled by the proposed RC calibrator, was implemented in a $0.18-{\mu}m$ CMOS technology. The channel selection filter with the proposed RC calibrator draws 1.8 mA from a 1.8 V supply voltage and the measured 3 dB cut-off frequencies of the channel selection LPF is controlled accurately by the RC calibrator.

A Study on the Side-Cut Grinding using the CBN Wheels (CBN 숫돌에 의한 측면연삭가공에 관한 연구)

  • Lee, Choong-Seok;Kim, Chang-Su;Park, Won-Kyue;Lee, Jong-Chan;Choi, Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.98-103
    • /
    • 2012
  • One of the problems in the grinding process using the machining center(MC) with a small diametric wheels is machining error due to decrease of the quill diameter. In this thesis, side-cut grinding is performed with a vitrified bonded CBN wheel on the machining center to establish the basis of the grinding using MC. The grinding force and machining error are investigated experimentally for the change of the machining condition. It is possible to estimate the machining performance by the ratio of the setting depth of cut and actual depth of cut. In addition, the relation between normal grinding force and machining error is presented by the experimental formula.

Evaluation of blasting vibration with center-cut methods for tunnel excavation

  • Lee, Seung-Joong;Kim, Byung-Ryeol;Choi, Sung-Oong;Kim, Nam-Soo
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.423-435
    • /
    • 2022
  • Ground vibration generated repeatedly in blasting tunnel excavation sites is known to be one of the major hazards induced by blasting operations. Various studies have been conducted to minimize these hazards, both theoretical and empirical methods using electronic detonator, the deck charge method, the center-cut method among others Among these various existing methods for controlling the ground vibration, in this study, we investigated the cut method. In particular, we analyzed and compared the V-cut method, which is commonly used in tunnel blasting, to the double-drilled parallel method, which has recently been introduced in tunnel excavation site. To understand the rock fragmentation efficiency as well as the ground vibration controllability of the two methods, we performed in-situ field blasting tests with both cut methods at a tunnel excavation site. Additionally, numerical analysis by FLAC3D has been executed for a better understanding of fracture propagation pattern and ground vibration generation by each cut method. Ground vibration levels, by PPVs measured in field blasting tests and PPVs estimated in numerical simulations, showed a lower value in the double-drilled parallel compared with the V-cut method, although the exact values are quite different in field measurement and numerical estimation.

Effects of the Sheath on Determination of the Plasma Density of Microwave Probe

  • Kim, Dae-Woong;You, Shin-Jae;Na, Byung-Keun;You, Kwang-Ho;Kim, Jung-Hyung;Chang, Hong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.181-181
    • /
    • 2012
  • The microwave probe for measuring plasma density is widely used for its advantages: First, it is not affected by the reactive gas. Second, it can measure local plasma parameters such as plasma density, plasma potential and plasma temperature. Third, it is simple and robust. A cut-off probe is the one of the most promising microwave probe. Recently, Kim et al. reveals the physics of the cut-off probe but the effect of the sheath on the determination of the plasma density is not explained. In this presentation, for taking account of sheath effects on determination of plasma density from the cut-off peak, a simplified circuit modeling and an E/M simulation are conducted. The results show that occupation ratio of sheath volume between two tips of the cut-off probe and subsequence pressure condition mainly change position of the cut-off peak with respect to plasma frequency. Magnitude of relative voltage taken on the impedance of sheath and the impedance of bulk plasma can explain this effect. Furthermore, effects of gap size, tip radius, and tip length ware revealed based on above analysis.

  • PDF

An Analysis on the Cryogenic Distillation Process for $^{13}CH_4$ Separation from LNG by Short-Cut Method (Short-Cut 방법에 의한 LNG 성분에서 $^{13}CH_4$초저온 증류 공정 분석)

  • Lee Youngchul;Song Taekyoong;Cho ByungHak;Baek Youngsoon;Song KyuMin
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.2 s.27
    • /
    • pp.22-27
    • /
    • 2005
  • In this study, we analyze computational simulation of cryogenic distillation process to separate $^{13}CH_4$ and $^{12}CH_4$ from LNG by using the cryogenic energy. Used computational simulation program is made Smoker's equation and FUG(Fenske-Underwood-Gilliland)'s method by short-cut method. Generally speaking, the technology of carbon isotope separation is studied by many methods, especially the separation by cryogenic distillation process is commercialized because of many merits.

  • PDF

The Effects on a Side-Cut Grinding depend on the Change of the Quill Rigidity (퀼축강성 변화가 측면 연삭가공에 미치는 영향)

  • Choi, Hwan;Kim, Chang-Su;Park, Won-Kyue;Lee, Choong-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.36-41
    • /
    • 2013
  • One of the problems in grinding process using a machining center(MC) with a small diametric wheels is machining error due to decrease of the quill diameter. In this study, side-cut grinding is performed with a vitrified bonded CBN wheel on the machining center. Grinding experiments are performed at various grinding conditions including quill length, quill diameter and depth of cut. The effect on the grinding force, machining error and surface roughness due to the change of the quill rigidity are investigated experimentally. The slenderness ratio of the quill is significant factor to analyse the change of the grinding force and machining error.