• Title/Summary/Keyword: Center boss diaphragm

Search Result 4, Processing Time 0.019 seconds

The Diaphragm Structure Using the Local Surface Etching for the Improvement of Sensitivity Characteristics (감도특성 향상을 위한 국부적 표면식각 다이아프램 구조 연구)

  • Lee, Gon-Jae;Oh, Dong-Hwan;Lee, Jong-Hong;Kim, Sung-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.309-315
    • /
    • 2004
  • In the pressure sensor, about below 20 kPa, the center boss diaphragm structure is generally used, but it is hard to obtain the high sensitivity because the center boss structure is limited at the thickness and size of diaphragm with chip size. Therefore, this paper suggests that the Center boss structure has surface etched diaphragm using a stress concentration to improve the sensitivity. We carried out the simulation and fabrication applied new diaphragm design. In the result, the sensitivity is improved to 60% without the change of non-linearity (0.14%FS). So, the Center boss of surface etched diaphragm can be applied for the high sensitivity in the low-pressure sensor.

Fabrication of Relative-type Capacitive Pressure Sensor (상대압 용량성 압력센서의 제작)

  • 서희돈;임근배;최세곤
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.7
    • /
    • pp.82-88
    • /
    • 1993
  • This paper describes fabrication of relative type capacitive pressure sensor to be in great demand for many fields. The fabricated sensor consists of two parts` a sensing diaphragm and a pyrox glass cover. The sensor size is 4.5${\times}3.4mm$^{2})$ and 400$\mu$m thick. To improve the nonlinearity, this sensor is designed a rectangular silicon diaphragm with a center boss structure, and in order to improve the temperature characteristics of the sensor in a packaging process, the sensing element is mounted on the pyrex glass support. Some suggestions toward the design and fabrication of improved sensors have been presented. The zero pressure capacitance, Co of sensor is 26.57pF, and the change of capacitance, ${\Delta}$C is 1.55pF from 0Kgf/Cm$^{2}$ to 1Kgf/Cm$^{2}$ at room temperature. The nonlinearity of the sensor output with center boss diaphragm is 1.29%F.S., and thermal zero shift and thermal sensitivity shift is less than 1.43%F.S./$^{\circ}C$and 0.14% F.S./$^{\circ}C$, respectively.

  • PDF

A Design of Pressure Sensor for Improving Linearity at Low Pressure Range (저압에서의 선형성을 향상시키기 위한 압력센서의 설계)

  • Lee, Bo-Na;Lee, Moon-Key
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.1-8
    • /
    • 1996
  • In this paper, We have designed silicon pressure sensor with center-bossed diaphragm which improving sensitivity and linearity by reducing diaphragm deflection. Designed center-bossed pressure sensor showed maximum deflection of $0.125{\mu}m$, maximum stress of $2.24{\times}10^7 Pa$ and sensitivity of 27.67 mV/V.psii. As a result, diaphragm deflection was reduced to 1/160 that of diaphragm thickness and 1/35 that of square diaphragm. Also, sensitivity was increased 19 times compared to square diaphragm.

  • PDF

Silicon Strain Gauge Load Cell for Weighting Disdrometer

  • Lee, Seon-Gil;Moon, Young-Soon;Son, Won-Ho;Sohn, Young-Ho;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.321-326
    • /
    • 2013
  • In this paper, the usability of a compact silicon strain gauge load cell in a weighting disdrometer for measuring the impact load of a falling raindrop is introduced for application in a multi-meteorological sensor. The silicon strain gauge load cell is based on the piezoresistive effect, which has a high linearity output from the momentum of the raindrop and the simplicity of signal processing. The weighting disdrometer shows a high sensitivity of 7.8 mV/g in static load measurement when the diaphragm thickness of the load cell is $250{\mu}m$.