• Title/Summary/Keyword: Center Loss

Search Result 3,755, Processing Time 0.032 seconds

Estrogen promotes the onset and development of idiopathic scoliosis via disproportionate endochondral ossification of the anterior and posterior column in a bipedal rat model

  • Zheng, Shuhui;Zhou, Hang;Gao, Bo;Li, Yongyong;Liao, Zhiheng;Zhou, Taifeng;Lian, Chengjie;Wu, Zizhao;Su, Deying;Wang, Tingting;Su, Peiqiang;Xu, Caixia
    • Experimental and Molecular Medicine
    • /
    • v.50 no.11
    • /
    • pp.3.1-3.11
    • /
    • 2018
  • This study aimed to verify the effects of estrogen on the onset and development of adolescent idiopathic scoliosis and the mechanisms associated with these effects by constructing a pubescent bipedal rat model. Experiments were conducted to investigate whether scoliosis progression was prevented by a Triptorelin treatment. One hundred twenty bipedal rats were divided into female, OVX (ovariectomy), OVX + E2, Triptorelin, sham, and male groups. According to a spinal radiographic analysis, the scoliosis rates and curve severity of the female and OVX + E2 groups were higher than those in the OVX, Triptorelin, and male groups. The measurements obtained from the sagittal plane of thoracic vertebrae CT confirmed a relatively slower growth of the anterior elements and a faster growth of the posterior elements between T11 and T13 in the female and OVX + E2 groups than in the OVX and Triptorelin groups. Histomorphometry and immunohistochemistry revealed a significantly longer hypertrophic zone of the vertebral cartilage growth plates that expressed more type X collagen and less type II collagen in the OVX and Triptorelin groups than in the female and OVX + E2 groups. Ki67 immunostaining confirmed an increase in the proliferation of vertebral growth plate chondrocytes in the OVX group compared with the female and OVX + E2 groups. In conclusion, estrogen obviously increased the incidence of scoliosis and curve severity in pubescent bipedal rats. The underlying mechanism may be a loss of coupling of the endochondral ossification between the anterior and posterior columns. Triptorelin decreased the incidence of scoliosis and curve magnitudes in bipedal female rats.

Electrical Characteristics of PV Modules with Odd Strings by Arrangement on Bypass Diode (홀수스트링 PV모듈의 바이패스 다이오드 배치에 의한 전기적 특성)

  • Shin, Woo-Gyun;Go, Seok-Hwan;Ju, Young-Chul;Song, Hyung-Jun;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.4
    • /
    • pp.1-11
    • /
    • 2017
  • Most PV modules are fabricated by 6 cell-strings with solar cells connected in series. Moreover, bypass diodes are generally installed every 2 cell-strings to prevent PV modules from a damage induced by current mismatch or partial shading. But, in the case of special purpose PV module, like as BIPV (Building Integrated Photovoltaic), the number of cell-strings per module varies according to its size. Differ from a module employing even cell-strings, the configuration of bypass diode should be optimized in the PV module with odd strings because of oppositely facing electrodes. Hence, in this study, electrical characteristics of special purposed PV module with odd string was empirically and theoretically studied depending on arrangement of bypass diode. Here, we assumed that PV module has 3 strings and the number of bypass diodes in the system varies from 2 to 6. In case of 2 bypass diodes, shading on a center string increases short circuit current of the module, because of a parallel circuit induced by 2 bypass diodes connected to center string. Also, the loss is larger, as the shading area in the center string is enlarged. Thus, maximum power of the PV module with 2 bypass diode decreases by up to 59 (%) when shading area varies from 50 to 90 (%). On the other hand, In case of 3 and 6 bypass diodes, the maximum power reduction was within about 3 (W), even the shading area changes from 50 to 90 (%). As a result, It is an alternative to arrange the bypass diode by each string or one bypass diode in the PV module in order to completely bypass current in case of shading, when PV module with odd string are fabricated.

The Effect of Jeju Wild Ginseng Extracts on Skin Barrier via Serine-Palmitoyltransferase (제주산양산삼이 세린-팔미토일 전이효소(Serine-Palmitoyltransferase)를 통해 피부 장벽에 미치는 효과에 대한 연구)

  • Kim, Hyo Min;Lee, Jung No;Kim, Jae Moon;Kim, Sung Kyu;Park, Sung-Min
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.2
    • /
    • pp.119-126
    • /
    • 2016
  • Skin is the largest organ that protects the body from the external environmental factors such as smog, cigarette smoke, UV. Protective skin barrier is composed with keratinizational keratinocytes and intercellular lipids such as ceramides, cholesterols and fatty acids combined by the lamellar liquid crystal structure. In this research, we confirmed that the Jeju wild ginseng (JWG) extracts dose-dependently increased the expression of serine-palmitoyltransferase (SPT) protein which is associated with ceramide biosynthesis. In addition, emulsion containing 5% JWG extract was applied on skin of human volunteers for 2 weeks and then significantly reduced transepidermal water loss (TEWL) compared to that of control group. As a results, JWG extract increased the biosynthesis of ceramides that is the key components of the skin lipid through enhancing expression of SPT. In addition, JWG extract reduced TEWL resulting in improvement of skin barrier function. In this context, we suggest that JWG extract could be used as a skin barrier enhancer and moisturing agents in cosmetic fileds.

A Hydration Reaction and Strength Development Properties of Cement Using Pond Ash in Coal Fired Power Plant (화력 발전소 매립회를 치환한 시멘트의 수화반응 및 강도발현 특성)

  • Lee, Jae-Seung;Noh, Sang-Kyun;Shin, Hong-Chul
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.578-584
    • /
    • 2021
  • This study comparatively analyzed the properties of hydration reaction and strength development of four types of pond ash(PA) and fly ash(FA), aiming for the effective use of PA. The PA whose chlorine content was highest due to the seawater movement method had a faster setting time, higher cumulative heat, and greater initial strength development than those of FA due to the acceleration of the cement hydration reaction. However, the activity factor increase rate decreased after seven days of curing due to the rapid generation of early hydrates. The PA that contained impurities, such as a large amount of unburned carbon, had a delayed setting time due to the lower hydration reaction. Moreover, the strength was degraded in all curing ages. The PA whose chlorine content was lower due to the freshwater movement method and the amorphous content exhibited similar hydration reactivity and strength development characteristics compared to that of FA. The thermogravimetric analysis results verified that it had a similar level of Ca(OH)2 consumption and pozzolanic reactivity with that of FA. Conclusively, it is necessary to expand the application of the freshwater movement method and manage the ignition loss to raise PA's usability.

Damage Characteristics of Metal Materials According to the SO2 Concentration (이산화황 농도에 따른 금속시편의 손상 특성)

  • Kim, Myoung Nam;Lim, Bo A;Shin, Eun Jeong;Lee, Sun Myung
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.1
    • /
    • pp.176-187
    • /
    • 2013
  • A study has been carried out on metal materials in order to identify the quantitative relation between the concentration and damage characteristics after evaluation of the damage characteristics according to the $SO_2$ concentration. The prepared metal samples, which were categorized according to the material (silver, copper, iron, lead, brass) were exposed to 0.01, 0.12, 1, 10, 100, 1,000, and 5,000ppm of $SO_2$ for 24 hours and the optical, physical, chemical deterioration rates both before and after testing were evaluated. The results showed optical deterioration, a loss of gloss on silver specimen with $SO_2$ 100ppm, an increase of color difference on brass, iron, copper and lead specimens with $SO_2$ 5,000ppm, as well as physical changes such as an increase of thickness and corrosion rate on iron sample with $SO_2$ 5,000ppm. In the case of chemical changes such as an increase sulfate ion ($SO{_4}^{2-}$) concentration and decrease of pH on iron and brass specimens were identified. These results suggest that $SO_2$ 100ppm caused clear optical deterioration on some metals such as silver and physicochemical and optical deterioration were identified at $SO_2$ 5,000ppm regardless of metal type. Also, It was concluded that iron and brass are the most susceptible of the metal specimens to $SO_2$.

A Study for the Development of Fault Diagnosis Technology Based on Condition Monitoring of Marine Engine (선박 엔진의 상태감시 기반 고장진단 기술 개발에 관한 연구)

  • Park, Jae-Cheul;Jang, Hwa-Sup;Jo, Yeon-Hwa
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.230-231
    • /
    • 2019
  • This study is a development on condition based maintenance(CBM) technology which is a core item of future autonomous ships. It is developing to design & installation of condition monitoring system and acquisition & processing of data from ongoing ships for fault prediction & prognosis of engine in operation. The ultimate goal of this study is to develop a predicts and decision support software for marine engine faults. To do this, the FMEA and fault tree analysis of the main engine should be accompanied by the analysis of classification of system, identification of the components, the type of faults, and the cause and phenomenon of the failure. Finally, the CBM system solution software could predict and diagnose the failure of main engine through integrated analysis for bid-data of ongoing ships and engineering knowledge. Through this study, it is possible to pro-actively cope with abnormal signals of engine and to manage efficiently, and as a result, expected that marine accident and ship operation loss during navigation will be prevented in advance.

  • PDF

The Effect of Personality Type and Job Performance on Emotional Exhaustion and Job Satisfaction - Staff of the Center for Children's foodservice management - (어린이급식관리지원센터 직원의 성격유형과 직무수행도가 감정고갈 및 직무만족도에 미치는 영향)

  • Lee, Kyung-Min;Jeon, Min-Sun
    • Korean Journal of Community Nutrition
    • /
    • v.23 no.6
    • /
    • pp.496-505
    • /
    • 2018
  • Objectives: This study examined the relationship between the personality traits and job performance of Centers for Children's Foodservice Management (CCFSM) staff on emotional exhaustion and job satisfaction. In addition, the characteristics of the center organization were examined to provide practical guidelines for the operation of the center. The aim was to determine management implications with an important meaning in human resource management to enhance the efficiency of the operation of Centers for Children's Foodservice Management (CCFSM). Methods: Out of 207 centers, there were 1,057 employees at 173 centers who agreed to participate in the study, the questionnaire was mailed on February 17, 2017 and collected by mail on March 31, 2017. Finally, 81 centers (46.82%) participated in the survey and 493 questionnaires were used. Results: Neuroticism among the five personality factors had a positive (+) influence on 'cynicism' and 'exhaustion' among the three subordinate factors of emotional exhaustion, negative (-) effects on the 'job' among the six subscales of job satisfaction. In addition, openness showed a negative (-) effect on 'loss of professional confidence' of emotional exhaustion and positive (+) relationship with the 'job' of job satisfaction. Agreeableness appeared to have a negative (-) effect on all factors of emotional exhaustion and a positive (+) influence on all factors of job satisfaction. As a result of analyzing the effects of job performance on emotional exhaustion and job satisfaction, the planning and operations management team showed a positive (+) influence on all factors of emotional exhaustion and negative (-) influence on all factors of job satisfaction. On the other hand, the nutrition management team showed a negative (-) influence on all emotional exhaustion factors and a positive (+) influence on the factors of job satisfaction. The hygiene management team showed a positive (+) relationship with 'Emotional exhaustion' among the subordinate factors of emotional exhaustion and a negative (-) influence on the 'Educational opportunity' of job satisfaction. Conclusions: The personality type and job performance of Centers for Children's foodservice management (ccfsm) staff significantly affected the emotional exhaustion and job satisfaction.

A Study of Moth-eye Nano Structure Embedded Optical Film with Mitigated Output Power Loss in PERC Photovoltaic Modules (PERC 태양전지 모듈의 출력저하 방지를 위한 모스아이(Moth-eye) 광학필름 연구)

  • Oh, Kyoung-suk;Park, Jiwon;Choi, Jin-Young;Chan, Sung-il
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.55-60
    • /
    • 2020
  • The PERC photovoltaic (PV) modules installed in PV power plant are still reports potential-induced degradation (PID) degradation due to high voltage potential differences. This is because Na+ ions in the cover glass of PV modules go through the encapsulant (EVA) and transferred to the surface of solar cells. As positive charges are accumulated at the ARC (SiOx/SiNx) interface where many defects are distributed, shunt-resistance (Rsh) is reduced. As a result, the leakage current is increased, and decrease in solar cell's power output. In this study, to prevent of this phenomenon, a Moth-eye nanostructure was deposited on the rear surface of an optical film using Nano-Imprint Lithography method, and a solar mini-module was constructed by inserting it between the cover glass and the EVA. To analyze the PID phenomenon, a cell-level PID acceleration test based on IEC 62804-1 standard was conducted. Also analyzed power output (Pmax), efficiency, and shunt resistance through Light I-V and Dark I-V. As a result, conventional solar cells were decreased by 6.3% from the initial efficiency of 19.76%, but the improved solar cells with the Moth-eye nanostructured optical film only decreased 0.6%, thereby preventing the PID phenomenon. As of Moth-eye nanostructured optical film, the transmittance was improved by 4%, and the solar module output was improved by 2.5%.

A Study on the application method of UPS's Battery Safety for battleship Command and Fire Control System (지휘무장통제체계용 UPS 배터리의 안전성 확보방안 연구)

  • Park, Gun-Sang;Kim, Jae-Yun;Kim, Dong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.587-596
    • /
    • 2021
  • Naval battleships have systems to perform special purposes, such as the Command and Fire Control System (CFCS). Some of the this equipment should be equipped with an Uninterruptible Power System (UPS ) to ensure operational continuity and the backup of important data, even during unexpected power outages caused by problems with the ship's power generator. Heavy combat losses can occur if the equipment cannot satisfy the function. Therefore, it is important to design a stable UPS. The battery and Battery Management System (BMS) are two of the most important factors for designing a stable UPS. A power outage will be encountered if the battery and BMS are not stable. The customer will be exposed to abnormal situations, loss of important tactical data, and inability to operate some of the CFCS. As a result, an enhanced safety system should be designed. Thus, this study implemented and verified the improved system in terms of three methods, such as comparative analysis of the batteries, improvement about leakage current of the circuit, and tests of the aggressive environmental resistance to improve the UPS for CFCS.

Biocontrol of Rice Diseases by Microorganisms (미생물을 활용한 친환경적인 벼 병해 방제법)

  • Kim, Jung-Ae;Song, Jeong-Sup;Jeong, Min-Hye;Park, Sook-Young;Kim, Yangseon
    • Research in Plant Disease
    • /
    • v.27 no.4
    • /
    • pp.129-136
    • /
    • 2021
  • Rice is responsible for the stable crop of 3 billion people worldwide, about half of Asian depends on it, and rice is grown in more than 100 countries. Rice diseases can lead to devastating economic loss by decreasing yield production, disturbing a stable food supply and demand chain. The most commonly used method to control rice disease is chemical control. However, misuse of chemical control can cause environmental pollution, residual toxicity, and the emergence of chemical-resistant pathogens, the deterioration of soil quality, and the destruction of biodiversity. In order to control rice diseases, research on alternative biocontrol is actively pursued including microorganism-oriented biocontrol agents. Microbial agents control plant disease through competition with and antibiotic effects and parasitism against plant pathogens. Microorganisms isolated from the rice rhizosphere are studied comprehensively as biocontrol agents against rice pathogens. Bacillus sp., Pseudomonas sp., and Trichoderma sp. were reported to control rice diseases, such as blast, sheath blight, bacterial leaf blight, brown spot, and bakanae diseases. Here we reviewed the microorganisms that are studied as biocontrol agents against rice diseases.