• Title/Summary/Keyword: Censored regression models

Search Result 25, Processing Time 0.025 seconds

The restricted maximum likelihood estimation of a censored regression model

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.3
    • /
    • pp.291-301
    • /
    • 2017
  • It is well known in a small sample that the maximum likelihood (ML) approach for variance components in the general linear model yields estimates that are biased downward. The ML estimate of residual variance tends to be downwardly biased. The underestimation of residual variance, which has implications for the estimation of marginal effects and asymptotic standard error of estimates, seems to be more serious in some limited dependent variable models, as shown by some researchers. An alternative frequentist's approach may be restricted or residual maximum likelihood (REML), which accounts for the loss in degrees of freedom and gives an unbiased estimate of residual variance. In this situation, the REML estimator is derived in a censored regression model. A small sample the REML is shown to provide proper inference on regression coefficients.

Comprehension and application of Tobit and Heckit models for censored data (절단자료에 대한 Tobit과 Heckit 모형의 이해와 활용)

  • Kim, Jeonghwan;Jang, Mina;Cho, Hyungjun
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.3
    • /
    • pp.357-370
    • /
    • 2022
  • In this paper, Tobit and Heckit models are introduced. These models have been used for analyzing censored data. Censoring occurs at a specific point and a large number of observations are distributed with a positive probability at a certain point. Censoring can occur due to observing limitation or exogenous variables. Tobit and Heckit models are used to correct sample selection bias, which can occur when an ordinary linear regression model is fitted to censored data. However, the difference between the two models is not clearly accounted for; hence, they have often been used interchangeably. Therefore, the suitability of the models was validated through simulated data, and demonstrated through real data. As the result, it was confirmed that both Tobit and Heckit models are well-fitted to the data censored due to observing limitation, although Tobit model was fitted parsimoniously. In contrast, only Heckit model is well-fitted to the data censored due to exogenous variables.

The skew-t censored regression model: parameter estimation via an EM-type algorithm

  • Lachos, Victor H.;Bazan, Jorge L.;Castro, Luis M.;Park, Jiwon
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.3
    • /
    • pp.333-351
    • /
    • 2022
  • The skew-t distribution is an attractive family of asymmetrical heavy-tailed densities that includes the normal, skew-normal and Student's-t distributions as special cases. In this work, we propose an EM-type algorithm for computing the maximum likelihood estimates for skew-t linear regression models with censored response. In contrast with previous proposals, this algorithm uses analytical expressions at the E-step, as opposed to Monte Carlo simulations. These expressions rely on formulas for the mean and variance of a truncated skew-t distribution, and can be computed using the R library MomTrunc. The standard errors, the prediction of unobserved values of the response and the log-likelihood function are obtained as a by-product. The proposed methodology is illustrated through the analyses of simulated and a real data application on Letter-Name Fluency test in Peruvian students.

Influence diagnostics for skew-t censored linear regression models

  • Marcos S Oliveira;Daniela CR Oliveira;Victor H Lachos
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.6
    • /
    • pp.605-629
    • /
    • 2023
  • This paper proposes some diagnostics procedures for the skew-t linear regression model with censored response. The skew-t distribution is an attractive family of asymmetrical heavy-tailed densities that includes the normal, skew-normal and student's-t distributions as special cases. Inspired by the power and wide applicability of the EM-type algorithm, local and global influence analysis, based on the conditional expectation of the complete-data log-likelihood function are developed, following Zhu and Lee's approach. For the local influence analysis, four specific perturbation schemes are discussed. Two real data sets, from education and economics, which are right and left censoring, respectively, are analyzed in order to illustrate the usefulness of the proposed methodology.

A Comparison Study of Survival Regression Models Based on Data Depths (뎁스를 이용한 생존회귀모형들의 비교연구)

  • Kim, Jee-Yun;Hwang, Jin-Soo
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.2
    • /
    • pp.313-322
    • /
    • 2007
  • Several robust censored depth regression methods are compared under contamination. Park and Hwang(2003) suggested a way to circumvent the censoring issue by incorporating Kaplan-Meier type weight in halfspace regression depth and Park(2003) used a similar technique to simplicial regression depth. Hubert et al. (2001) suggested a high breakdown point regression depth based on projection called rcent. A new method to implement censoring in rcent is suggested and compared with two precedents under various contamination and censoring schemes.

Restricted maximum likelihood estimation of a censored random effects panel regression model

  • Lee, Minah;Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.4
    • /
    • pp.371-383
    • /
    • 2019
  • Panel data sets have been developed in various areas, and many recent studies have analyzed panel, or longitudinal data sets. Maximum likelihood (ML) may be the most common statistical method for analyzing panel data models; however, the inference based on the ML estimate will have an inflated Type I error because the ML method tends to give a downwardly biased estimate of variance components when the sample size is small. The under estimation could be severe when data is incomplete. This paper proposes the restricted maximum likelihood (REML) method for a random effects panel data model with a censored dependent variable. Note that the likelihood function of the model is complex in that it includes a multidimensional integral. Many authors proposed to use integral approximation methods for the computation of likelihood function; however, it is well known that integral approximation methods are inadequate for high dimensional integrals in practice. This paper introduces to use the moments of truncated multivariate normal random vector for the calculation of multidimensional integral. In addition, a proper asymptotic standard error of REML estimate is given.

Asymptotics for Accelerated Life Test Models under Type II Censoring

  • Park, Byung-Gu;Yoon, Sang-Chul
    • Journal of the Korean Data and Information Science Society
    • /
    • v.7 no.2
    • /
    • pp.179-188
    • /
    • 1996
  • Accelerated life testing(ALT) of products quickly yields information on life. In this paper, we investigate asymptotic normalities of maximum likelihood(ML) estimators of parameters for ALT model under Type II censored data using results of Bhattacharyya(1985). Further illustrations include the treatment of asymptotic of the exponential and Weibull regression models.

  • PDF

A semiparametric method to measure predictive accuracy of covariates for doubly censored survival outcomes

  • Han, Seungbong;Lee, JungBok
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.4
    • /
    • pp.343-353
    • /
    • 2016
  • In doubly-censored data, an originating event time and a terminating event time are interval-censored. In certain analyses of such data, a researcher might be interested in the elapsed time between the originating and terminating events as well as regression modeling with risk factors. Therefore, in this study, we introduce a model evaluation method to measure the predictive ability of a model based on negative predictive values. We use a semiparametric estimate of the predictive accuracy to provide a simple and flexible method for model evaluation of doubly-censored survival outcomes. Additionally, we used simulation studies and tested data from a prostate cancer trial to illustrate the practical advantages of our approach. We believe that this method could be widely used to build prediction models or nomograms.

Estimation methods and interpretation of competing risk regression models (경쟁 위험 회귀 모형의 이해와 추정 방법)

  • Kim, Mijeong
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.7
    • /
    • pp.1231-1246
    • /
    • 2016
  • Cause-specific hazard model (Prentice et al., 1978) and subdistribution hazard model (Fine and Gray, 1999) are mostly used for the right censored survival data with competing risks. Some other models for survival data with competing risks have been subsequently introduced; however, those models have not been popularly used because the models cannot provide reliable statistical estimation methods or those are overly difficult to compute. We introduce simple and reliable competing risk regression models which have been recently proposed as well as compare their methodologies. We show how to use SAS and R for the data with competing risks. In addition, we analyze survival data with two competing risks using five different models.

Regression models for interval-censored semi-competing risks data with missing intermediate transition status (중간 사건이 결측되었거나 구간 중도절단된 준 경쟁 위험 자료에 대한 회귀모형)

  • Kim, Jinheum;Kim, Jayoun
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.7
    • /
    • pp.1311-1327
    • /
    • 2016
  • We propose a multi-state model for analyzing semi-competing risks data with interval-censored or missing intermediate events. This model is an extension of the 'illness-death model', which composes three states, such as 'healthy', 'diseased', and 'dead'. The state of 'diseased' can be considered as an intermediate event. Two more states are added into the illness-death model to describe missing events caused by a loss of follow-up before the end of the study. One of them is a state of 'LTF', representing a lost-to-follow-up, and the other is an unobservable state that represents the intermediate event experienced after LTF occurred. Given covariates, we employ the Cox proportional hazards model with a normal frailty and construct a full likelihood to estimate transition intensities between states in the multi-state model. Marginalization of the full likelihood is completed using the adaptive Gaussian quadrature, and the optimal solution of the regression parameters is achieved through the iterative Newton-Raphson algorithm. Simulation studies are carried out to investigate the finite-sample performance of the proposed estimation procedure in terms of the empirical coverage probability of the true regression parameter. Our proposed method is also illustrated with the dataset adapted from Helmer et al. (2001).