• Title/Summary/Keyword: Cenozoic

Search Result 84, Processing Time 0.02 seconds

Fossil Scaphopods from the Hagjeon Formation and the Duho Formation, the Cenozoic Pohang Basin, Korea (신생대 제3기 포항분지의 학전층과 두호층에서 산출된 굴족류 화석)

  • Kong, Dal Yong;Lee, Seong Joo
    • Korean Journal of Heritage: History & Science
    • /
    • v.45 no.1
    • /
    • pp.218-231
    • /
    • 2012
  • A total of 126 fossil scaphopods (121 specimens from the Hagjeon Formation and 5 specimens from the Duho Formation) were found from the Cenozoic strata, Hagjeon and Duho Formations, Pohang Basin, Korea. Five species belonging two genera (Fissidentalium yokoyamai, F. sp. A, B, and Rhabdus sp. A, B) were classified: the most dominant species is Fissidentalium yokoyamai. The species of Fissidentalium yokoyamai is characterized by curved shell (accuration=3.90%) and very closely spaced longitudinal ribs on shell surfaces, while the species of Rhabdus is a nearly straight shell characterized by concentric growth lines without longitudinal ribs. Identification of two genera is somewhat easy due to such morphological differences but classification at generic level is hard because diagnostic features (e.g., cross section and apical structure) are lost in the most specimens. Consequently, except for Fissidentalium yokoyamai, the rest were classified temporarily as F. sp. A, B, and Rhabdus sp. A, B. Two types of preservation state were recognized: one is three-dimensionally preserved specimen (3D specimen) and the other is compressed specimen. Internal parts of the 3D specimen is filled with clastic sediments identical to the surrounding sediments of the shells, which is not observed in the compressed specimens. It is, thus, concluded that the 3D fossils were originally empty but internal cavity were immediately filled with the sediments, which may have protect from the compaction due to pressure during deposition of the gravelly to coarse sandstone of the Hagjeon Formation.

Pleuronichthys sp. Fossils (Pleuronectidae) from the Duho Formation, Pohang Uhyeon-dong in Korea (포항시 우현동 두호층에서 산출된 Pleuronichthys sp. 화석)

  • Ko, Ju-Yeong;Nam, Kye-Soo
    • Journal of the Korean earth science society
    • /
    • v.37 no.3
    • /
    • pp.133-142
    • /
    • 2016
  • Two specimens of the Cenozoic fish fossils were discovered from the Miocene Duho Formation of Uhyeon-dong, Pohang, Korea. These fossils are identified as Pleuronichthys sp. based on the following- firstly, front dorsal fin rays elongated to the upper part of neurocranium, Secondly, right sided orbit of neurocranium, Thirdly, presence of urohyal like fish-hook, Fourthly, curved sciatic part of the urohyal, Fifthly, presence of postcleithrum, Sixthly, over 27 centrum, Seventhly, elongated first pterygiophore of the anal fin rays, Eightly, c-shaped inner side of urohyal, Ninthly, small or few cardiac apophysis, and Tenthly, presence of many spots on body. These fossils of Pleuronichthys represent the first record in East-Asia. Two specimens are anatomically different in the extent of the asymmetry and the flatness of skull. This represents the unique ontogeny stage of the Pleuronectidae, because they accompany the above anatomical difference when they transform from pelagic lifestyle to benthic lifestyle.

The description of the Flat fish (Pleuronectiformes) Fossils from the Miocene Duho Formation, Pohang Yeonam-dong in Korea and its Implication (포항시 여남동 마이오세 두호층에서 산출된 가자미목 화석의 기재와 의의)

  • Ko, Ju Yeong
    • Journal of the Korean earth science society
    • /
    • v.37 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • Four entities of the Cenozoic fish fossils were discovered in the Miocene Duho Formation, Pohang, Korea. these fossils were identified as the first Pleuronectiformes in Korea based on the following-the presence of postcleithrum, the elongation of the first proximal pterygiophore of the anal fin ray, almost consistent presence of two proximal pterygiophore of the anal fin rays between the two adjacent hemal spines, the fusion of the first and second hypurals, the fusion of the third and fourth hypurals and the first preural centrum, the presence of well-developed anteriormost plate-like neural spine, the presence of the urohyal like fish-hook and its elongated sciatic part, and the division of the parahypural from the first preural centrum. On the other hand, geological studies about the Duho Formation consistently claimed that shallow-sea creatures were washed away by meteorological events such as a great flood and deposited at the bottom of deep-sea by the turbidity current. However, in Duho Formation, only shallow-sea ones have been discovered thus far. This study reported that Flat fish, deep-sea creature, was discovered in Duho Formation for the first time in Korea.

Diversity of Fossil Woods from the Korean Peninsula (한반도에서 산출된 화석목재의 다양성)

  • Kim, Jong-Heon
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.51-58
    • /
    • 2015
  • In order to understand the broad outline and palaeobotanical significances, the fossil woods from the Korean Peninsula were integrated through the literature surveys. Types and diversity of them are gradually increasing from Mesozoic to Cenozoic, especially increased sharply in Cenozoic. During the Early Mesozoic, six conifer taxa belonging to four genera were described, which corresponds to about 6% of the Daedong flora. Those of the Late Mesozoic are all conifers, consisting of fifteen taxa belonging to seven genera, which corresponds to about 29% of the Nakdong flora. During the Neogene, thirty four taxa belong to sixteen families were described. Those woods mostly consist of dicotyledon and have the greatest diversity compared to other geologic eras, which corresponds to about 83% of the Janggi flora. It is inferred that such a rapid increase of the silicified wood fossils in Neogene are due to the abundant presence of dicotyledon in floral composition and of pyroclastic rocks in strata, which are appropriate for preserving wood as fossils.

Characteristics of the Cenozoic crustal deformation in SE Korea and their tectonic implications (한반도 동남부 신생대 지각변형의 주요 특징과 지구조적 의의)

  • Son, Moon;Kim, Jong-Sun;Chong, Hye-Yoon;Lee, Yung-Hee;Kim, In-Soo
    • The Korean Journal of Petroleum Geology
    • /
    • v.13 no.1
    • /
    • pp.1-16
    • /
    • 2007
  • The southeastern Korean Peninsula has experienced crustal multi-deformations according to changes of global tectonic setting during the Cenozoic. Characteristic features of the crustal deformations in relation to major Cenozoic tectonic events are summarized as follows. (1) Collision of Indian and Eurasian continents and abrupt change of movement direction of the Pacific plate (50${\sim}$43 Ma): The collision of Indian and Eurasian continents caused the eastward extrusion of East Asia block as a trench-rollback, and then the movement direction of the Pacific plate was abruptly changed from NNW to WNW. As a result, the strong suction-force along the plate boundary produced a tensional stress field trending EW or WNW-ESE in southeastern Korea, which resultantly induced the passive intrusion of NS or NNE trending mafic dike swarm. (2) Opening of the East Sea (25${\sim}$16 Ma): The NS or NNW-SSE trending opening of the East Sea generated a dextral shear stress regime trending NNW-SSE along the eastern coast line of the Korean Peninsula. As a result, pull-apart basins were developed in right bending and overstepping parts along major dextral strike slip faults trending NNW-SSE in southeastern Korea. The basins can be divided into two types on the basis of geometry and kinematics: Parallelogram-shaped basin (rhombochasm) and wedged-shaped basin (sphenochasm), respectively. In those times, the basins and adjacent basement blocks experienced clockwise rotation and northwestward tilting contemporaneously, and the basins often experienced a kind of propagating rifting from NE toward SE. At about 17Ma, the Yonil Tectonic Line, which is the westernmost border fault of the Miocene crustal deformation in southeastern Korea, began to move as a major dextral strike slip fault. (3) Clockwise rotation of southeastern Japan Island (about 15 Ma): The collision of the Izu-Bonin Arc and southeastern Japan Island, as a result of northward movement of the Philippine sea-plate, induced the clockwise rotation of southeastern Japan Island. The event caused the NW-SE compression in the Korea Strait as a tectonic inversion, which resultantly tenninated the basin extension and caused local counterclockwise rotation of blocks in southeastern Korea. (4) E-W compression in the East Asia (after about 5 Ma): Decreasing subduction angle of the Pacific plate and eastward movement of the Amurian plate have constructed the-top-to-west thrusts and become a major cause for earthquakes in southeastern Korea until the present time.

  • PDF

Fossil Albizia Legume (Mimosaceae) from the Miocene Duho Formation of the Yeonil Group in the Pohang Area, Korea

  • Kim Jong-Heon
    • Journal of the Korean earth science society
    • /
    • v.26 no.2
    • /
    • pp.166-171
    • /
    • 2005
  • Fossil legumes of Albizia miokalkora Hu et Chaney (Mimosoideae) were found in the Miocene Duho Formation of the Yeonil Group distributed along the coast of Yeonil Bay in the Pohang area. The legume is flat and long and has 5-7 rounded seeds. The legumes of Albizia miokalkora are rare in the Cenozoic floras of the world and only known to Middle Miocene of East Asia. The fossil Albizia may use one of the important taxa to construct the biogeographic history of East Asia. This discovery is the first record of Albizia from the Neogene strata of Korea.

Tectonic and magmatic development of Bismarck Sea, Papua New Guinea

  • Lee, Sang-Muk
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.209-210
    • /
    • 2006
  • The Bismarck Sea represent a unique region in the equatorial western Pacific where one can explore the relationship between tectonic and magmatic processes associated with back-arc opening. The sea, located north of Papua New Guinea and just south of the equator, formed during the final stages of a long, complex geological development of the Melanesian Borderland. The development resulted from the Cenozoic convergence between the Australian and Pacific- Caroline Plates and the opening of back-arc basins. At present, the Bismarck Sea straddles two oppositely facing trenches, the inactive Manus trench and the active New Britain trench, and covers two basins, the New Guinea Basin (NGB) to the west and the Manus Basin (MB) to the east. The two basins are separated by the shallow Willaumez-Manus Rise (WMR), which trends roughly from WNW to ESE. The origin of these major structural units and their relationship with the presentday zone of major seismicity along the Bismarck Sea Seismic Lineation (BSSL) remains unclear and is the main focus of our study.

  • PDF

Radar Measurement of Slow Deformation in the Baekdusan Stratovolcano

  • Kim, Sang-Wan;Won , Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.3
    • /
    • pp.221-228
    • /
    • 2005
  • Baekdusan is a Cenozoic stratovolcano in which a series of micro-seismic events and gaseous emissions have been reported in 1990s. Two-pass DInSAR technique was applied to determine displacement in the volcano by using 10 ERS SAR and 41 JERS-1 SAR datasets. Most interferometric phases out of 58 JERS-1 differential interferograms showed concentric fringe patterns that correlated with elevation. From an analysis of fringe-duration relation, the fringe patterns were found to be severely distorted specifically by stratified troposphere. To estimate the tropospheric delay, we used the data in the Sobaeksan located about 20 km away from the summit of Baekdusan. The maximum and mean magnitudes of the phase delay in the Baekdusan were respectively 13.8 cm and 3.8 cm over 1200 m in altitude. After removing tropospheric effects, a mean inflation rate was estimated to be about 3 mm per year from 1992 to 1998. Although the inflation rate of the volcano is inconclusive without ground truth data, the results indicate that there exists slow upward deformation in the Baekdusan volcano.

Interpretation of depositional setting and sedimentary facies of the late Cenozoic sediments in the southern Ulleung Basin margin, East Sea(Sea of Japan), by an expert system, PLAYMAKER2 (PLAYMAKER2, 전문가 시스템을 이용한 동해 울릉분지 남부 신생대 후기 퇴적층의 퇴적환경 해석)

  • Cheong Daekyo
    • The Korean Journal of Petroleum Geology
    • /
    • v.6 no.1_2 s.7
    • /
    • pp.20-24
    • /
    • 1998
  • Expert system is one type of artificial intelligence softwares that incorporate problem-solving knowledges and experiences of human experts by use of symbolic reasoning and rules about a specific topic. In this study, an expert system, PLAYMAKER2, is used to interpret sedimentary facies and depositional settings of the sedimentary sequence. The original version of the expert system, PLAYMAKER, was developed in University of South Carolina in 1990, and modified into the present PLAYMAKER2 with some changes in the knowledge-base of the previous system. The late Cenozoic sedimentary sequence with maximum 10,000 m in thickness, which is located in the Korean Oil Exploration Block VI-1 at the southwestern margin of the Ulleung Basin, is analysed by the expert system, PLAYMAKER2. The Cenozoic sedimentary sequence is divided into two units-lower Miocene and upper Pliocene-Pleistocene sediments. The depositional settings and sedimentary facies of the Miocene sediments interpreted by PLAYMAKER2 in terms of belief values are: for depositional settings, slope; $57.4\%$, shelf; $21.4\%$, basin; $10.1\%$, and for sedimentary facies, submarine fan; $35.7\%$, continental slope; $26.3\%$, delta; $16.1\%$, deep basinplain; $6.1\%$ continental shelf; $3.2\%$, shelf margin; $1.4\%$. The depositional settings and sedimentary facies of the Pliocene-Pleistocene sediments in terms of belief values we: for depositional settings, slope; $59.0\%$, shelf; $22.8\%$, basin; $7.0\%$, and for sedimentary facies, delta; $24.1\%$, continental slope; $22.2\%$, submarine fan; $17.3\%$, continental shelf; $7.0\%$, deep basinplain; $4.8\%$, shelf margin; $2.6\%$. The comparison of the depositional settings and sedimentary facies consulted by PLAYMAKER2 with those of the classical interpretation from previous studies shows resonable similarity for the both sedimentary units-the lower Miocene sediments and the upper Pliocene-Pleistocene sediments. It demonstrates that PLAYMAKER2 is an efficient tool to interpret the depositional setting and sedimentary facies for sediments. However, to be a more reliable system, many sedimentologists should work to refine and add geological rules in the knowledge-base of the expert system, PLAYMAKER2.

  • PDF

INVESTIGATION OF BAIKDU-SAN VOLCANO WITH SPACE-BORNE SAR SYSTEM

  • Kim, Duk-Jin;Feng, Lanying;Moon, Wooil-M.
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.148-153
    • /
    • 1999
  • Baikdu-san was a very active volcano during the Cenozoic era and is believed to be formed in late Cenozoic era. Recently it was also reported that there was a major eruption in or around 1002 A.D. and there are evidences which indicate that it is still an active volcano and a potential volcanic hazard. Remote sensing techniques have been widely used to monitor various natural hazards, including volcanic hazards. However, during an active volcanic eruption, volcanic ash can basically cover the sky and often blocks the solar radiation preventing any use of optical sensors. Synthetic aperture radar(SAR) is an ideal tool to monitor the volcanic activities and lava flows, because the wavelength of the microwave signal is considerably longer that the average volcanic ash particle size. In this study we have utilized several sets of SAR data to evaluate the utility of the space-borne SAR system. The data sets include JERS-1(L-band) SAR, and RADARSAT(C-band) data which included both standard mode and the ScanSAR mode data sets. We also utilized several sets of auxiliary data such as local geological maps and JERS-1 OPS data. The routine preprocessing and image processing steps were applied to these data sets before any attempts of classifying and mapping surface geological features. Although we computed sigma nought ($\sigma$$^{0}$) values far the standard mode RADARSAT data, the utility of sigma nought image was minimal in this study. Application of various types of classification algorithms to identify and map several stages of volcanic flows was not very successful. Although this research is still in progress, the following preliminary conclusions could be made: (1) sigma nought (RADARSAT standard mode data) and DN (JERS-1 SAR and RADARSAT ScanSAR data) have limited usefulness for distinguishing early basalt lava flows from late trachyte flows or later trachyte flows from the old basement granitic rocks around Baikdu-san volcano, (2) surface geological structure features such as several faults and volcanic lava flow channels can easily be identified and mapped, and (3) routine application of unsupervised classification methods cannot be used for mapping any types of surface lava flow patterns.

  • PDF