• 제목/요약/키워드: Cement-paste

검색결과 754건 처리시간 0.027초

석고형태에 따른 Belite-rich Cement의 수화 및 유동특성 (Rheological Properties and Hydration of Belite-rich Cement Paste with Various Calcium Sulfate Types)

  • 송종택;정재현;황인수
    • 한국세라믹학회지
    • /
    • 제38권5호
    • /
    • pp.446-453
    • /
    • 2001
  • 본 논문에서는 석고형태에 따른 belite-rich cement(BRC)의 수화성상 및 혼화제의 흡착거동으로부터 시멘트의 유동성에 미치는 영향성을 조사하였다. 또한, 보통 포틀랜드 시멘트(OPC)의 경우와도 그 영향성을 비교 검토하였다. 유동특성을 측정한 결과, 폴리카르복실산계 혼화제 사용시 반수와 이수석고를 첨가한 BRC가 미니슬럼프 값이 약 $\pm$20cm 근방의 수치를 보였으며, 무수석고를 첨가한 것과 OPC에서는 낮은 슬럼프치를 보였다. 초기 수화의 경우, XRD와 DSC에서 Ca(OH)$_2$의 생성량의 정도가 BRC 2-C(반수)>BRC 1-C(이수)>BRC 3-C(무수)의 순서로 줄어들기 때문에 장기강도측면에서도 반수석고와 이수석고를 동시에 사용하는 것이 우수할 것으로 추정된다. 또한 이 결과는 비표면적의 데이터와도 일치함을 보였다.

  • PDF

Mechanical Properties of Carbon-Fiber Reinforced Polymer-Impregnated Cement Composites

  • Park, Seung-Bum;Yoon, Eui-Sik
    • KCI Concrete Journal
    • /
    • 제11권3호
    • /
    • pp.65-77
    • /
    • 1999
  • A portland cement was reinforced by incorporating carbon fiber(CF), silica powder, and impregnating the pores with styrene monomers which were polymerized in situ. The effects of type, length, and volume loading of CF, mixing conditions, curing time and, curing conditions on mechanical behavior as well as freeze-thaw resistance and longer term stability of the carbon-fiber reinforced cement composites (CFRC) were investigated. The composite Paste exhibited a decrease in flow values linearly as the CF volume loadings increased. Tensile, compressive, and flexural strengths all generally increased as the CF loadings in the composite increased. Compressive strength decreased at CF loadings above approx. 3% in CFRC having no impregnated polymers due to the increase in porosity caused by the fibers. However, the polymer impregnation of CFRC improved all the strength values as compared with CFRC having no Polymer impregnation. Tensile stress-strain curves showed that polymer impregnation decreased the fracture energy of CFRC. Polymer impregnation clearly showed improvements in freeze-thaw resistance and drying shrinkage when compared with CFRC having no impregnated polymers.

  • PDF

X-선 회절 분석을 통한 고온 피해 시멘트 경화체의 성분 변화 분석 (Analysis of the Changes of composition of Hardened Cement at High Temperature by X-Ray Diffraction)

  • 지우람;박지웅;신기돈;이건철;허영선
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 추계 학술논문 발표대회
    • /
    • pp.113-114
    • /
    • 2017
  • In this study, the change of composition of cement hardened at high temperature through XRD was observed. The specimen was made of cement paste and the heating rate condition was applied at rapid thermal annealing (10.0℃ / min). The decrease of calcium hydroxide was not confirmed, but the calcium carbonate tended to be impossible or decreased after 800℃. Calcium silicate and larnite were observed to increase with increasing temperature. It is considered that silicic acid, which is a stable structure due to the decomposition of calcium silicate, is changed into a phase such as lime.

  • PDF

조강시멘트와 경화촉진제가 압축강도에 미치는 영향에 대한 실험적 연구 (Study on the Strength Development of cement paste using High-Early-Strength Cement and Hardening Accelerator)

  • 민태범;조인성;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 춘계 학술논문 발표대회
    • /
    • pp.56-58
    • /
    • 2013
  • In order to develop concrete generating compressive strength of 15MPa~30MPa aging for 6~12 hours in the room temperature curing, Hardening accelerator containing Ca2+ mixed with rapid hardening portland cement containing C3S in quantity. The result was that the more addictive contents of Hardening accelerator is, the more greatly early compressive strength was improved. That s because the composition of Ca(OH)2 was mass-produced at early-ages.

  • PDF

중금속이온이 시멘트의 수화 및 미세구조에 미치는 영향 (The Effects of the Heavy Metal Ions on the Hydration and Microstructure of the Cement Paste)

  • 김창은;이승규
    • 한국세라믹학회지
    • /
    • 제30권11호
    • /
    • pp.967-973
    • /
    • 1993
  • The effect on the hydration of cement was that Cu and Pb reacted with alkali to form soluble hydrates at theinitial stage and then there followed a slow reaction forming insoluble metal hydroxides. These hydroxides were deposited on the surface of cement particles providing a barrier against further hydration. But as a slow reaction continued, the insoluble layers were eventually destroyed and the hydration reaction resumed. Thereafter, another retardation occured by restricting the polymerization of silicates, shown by FT-IR spectroscopy analysis. In the case of Cr, as its reaction with cement caused H2O, the coordinator of Cr complex, to replace or polymerize with OH-, the formation of Cr complex promoted the leakage of OH- and increased the heat of dissolution. So the total heat evolution during hydration was larger than that in the case of Pb or Cu. The retarding effect of heavy metal ions was in the order Pb>Cu>Cr.

  • PDF

Diffusion study for chloride ions and water molecules in C-S-H gel in nano-scale using molecular dynamics: Case study of tobermorite

  • Zehtab, Behnam;Tarighat, Amir
    • Advances in concrete construction
    • /
    • 제4권4호
    • /
    • pp.305-317
    • /
    • 2016
  • Porous materials such as concrete could be subjected to aggressive ions transport. Durability of cement paste is extremely depended on water and ions penetration into its interior sections. These ions transport could lead different damages depending on reactivity of ions, their concentrations and diffusion coefficients. In this paper, chloride diffusion process in cement hydrates is simulated at atomistic scale using molecular dynamics. Most important phase of cement hydrates is calcium silicate hydrate (C-S-H). Tobermorite, one of the most famous crystal analogues of C-S-H, is used as substrate in the simulation model. To conduct simulation, a nanopore is considered in the middle of simulation cell to place water molecules and aggressive ions. Different chloride salts are considered in models to find out which one is better for calculation of the transport properties. Diffusion coefficients of water molecules and chloride ions are calculated and validated with existing analytical and experimental works. There are relatively good agreements among simulation outputs and experimental results.

비정질금속섬유 혼입율에 따른 시멘트 경화체의 강도 특성 (Strength Properties of Cement Composite according to the Mixing Ratio of Amorphous Metallic Fiber)

  • 김지환;노영환;이재인;배성호;오태규;최세진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 가을 학술논문 발표대회
    • /
    • pp.79-80
    • /
    • 2020
  • This study compared and analyzed the flow and strength characteristics of cement paste according to the rate of mixing of amorphous metallic fiber as part of the research for the development of amorphous metallic fiber reinforced cement composite.

  • PDF

계란껍질 분말을 혼입한 시멘트 페이스트의 수화 특성에 관한 실험적 연구 (Experimental Study on the Hydration Characteristics of Eggshell Powder in Cement Slurry)

  • 진옥곤;순양;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.110-111
    • /
    • 2021
  • The eggshell is a type of bio-waste which is considered hazardous to the environment. In this research, the waste eggshell is utilized as a potential filler in cementitious material. This study has measured by zeta potential to analyze the interaction between the surface of the filler and the calcium ion in the solution. Meanwhile, the effect of eggshell powder on cement hydration process has been determined by isothermal calorimeter. The results show that the surface of eggshell powder have a strong adsorption of Ca2+, and addition of the eggshell powder provides a heterogeneous nucleation site for cement, which promotes the growth of hydration products.

  • PDF

Experimental Approach on Sulfate Attack Mechanism of Ordinary Portland Cement Matrix: Part I. Sodium Sulfate Attack

  • 문한영;이승태;김종필
    • 콘크리트학회논문집
    • /
    • 제16권4호
    • /
    • pp.557-564
    • /
    • 2004
  • This paper introduces a study carried out to investigate sodium sulfate attack caused by various reactive products. Experiments were performed on mortar and paste specimens made with ordinary Portland cement (OPC) conforming to KS L 5201 Type I. The water-cement ratios were varied from 0.35 to 0.55. It was found from the laboratory study that the water-cement ratio may be a key to control the deterioration of OPC matrix during sodium sulfate attack. Furthermore, X-ray diffraction (XRD) confirmed that ettringite, gypsum and thaumasite were the main products formed by sodium sulfate attack. These findings were well supported by thermal analysis through differential scanning calorimetry (DSC), and confirmed the long-term understanding that deterioration mechanism by sodium sulfate attack is a complicated process. Most importantly, deterioration due to sodium sulfate attack is characterized as the drastic reduction in compressive strength as well as the expansion (especially in cement matrix with a higher water-cement ratio).

시멘트 모르타르의 응결 지연 효과에 관한 연구 (A Study on the Retarding effects of Cememtn Mortar Setting)

  • 이재한;이경희;김홍기
    • 한국세라믹학회지
    • /
    • 제33권3호
    • /
    • pp.307-312
    • /
    • 1996
  • In following addition of 0.3, -0.6, 0.8, 1.0 and 5 weight percent MgSiF66H2O studies have been made of the setting and hardening characteristics of ordinary portland cement. MgSiF66H2O retarded the setting time of ordinary portland cement and extended the induction pariod of the hydration. In ordinary portland cement the setting characteristics were drastically altered especially at high MgSiF66H2O contents. Evidence was also obtained by the formation of a KSiF6 which was very fine particle. The results wee as follows. 1. Slump was slightly decreased when MgSiF66H2O added. 2. Setting time was retarded depending on the amount of retarding agent 2 to 8 hours 3. Compressive strength was almost same or some increased in comparision with opc. 4. When MgSiF66H2O was added to cement paste K2SiF6 were formed It was fine-sized distributed uniformly in cement grain and caused retardation of cement setting.

  • PDF