• Title/Summary/Keyword: Cement-paste

Search Result 754, Processing Time 0.028 seconds

A Fundamental Study on the Development of Porous Concrete for Planting (식재용 다공질 콘크리트의 개발에 관한 기초적 연구)

  • 윤기원;이상태;김기철;황정하;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.912-915
    • /
    • 1998
  • As a fundamental study on the development of porous concrete for planting, this study is designed to present the properties of porous concrete by varying the kinds of cement, paste to aggregate ratio and dosage of AE admixture. As the results of experiment, the void volumes show 30~33%, 25~ 28% and 17~22% respectively, with paste to aggregate ratio of 20%, 30% and 40%. And unit weight is 1700~1900kg/㎥ while compressive strengths 40~60, 8 0~100 and 120~150kg/$\textrm{cm}^2$. pH of concrete shows a sufficient value at which the plant could grow, when the concrete is permeated in Ammonium Phosphate Dibasic for more than 1 hour. In brief, it shows a possibility of development of porous concrete if the concrete is permeated with permeating in Ammonium Phosphate Dibasic for more than 1 hour when the blast furnace slag cement is used.

  • PDF

Recycling of In-site waste soil material to fill a hollow between PHC pile and Earthen wall

  • Jang, Myung-Houn;Choi, Hee-Bok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.510-517
    • /
    • 2012
  • This study evaluated the recycling potential of in-site waste soil as pile back filling material (PBFM). We performed experiments to check workability, segregation resistance, bond strength, direct shear stress test, and dynamic load test using in-site waste soil in coastal areas. We found that PBFM showed better performance than general cement paste in terms of workability, segregation resistance, and bond strength. On the other hand, the structural performance of PBFM was slightly lower than that of general cement paste due to the skin friction force of pile by Pile Driving Analyzer and direct shear stress. However, because this type of performance degradation in terms of structure can be improved through the use of piles with larger diameter or by changing the type of pile, considering the economics and environment, we considered that recycling of PBFM has sufficient value.

Rheology Analysis of Cement Paste According to the Concentration of Borax Diluted Solution (붕사 희석액 농도에 따른 시멘트 페이스트의 레올로지적 분석)

  • Lee, Hyang-Sun;Lee, Yu-Jeong;Han, Dong-Yeop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.110-111
    • /
    • 2019
  • Concrete with high thixotropy has a lower plastic viscosity when pour in, thus demonstrating fluidity, and After poured, the viscosity can be restored again to ensure stable progress without additional liquidity and material separation. Therefore, in this study, a basic study of thixotropy of concrete was proceeded through cross-linked bond of PVA and Borax. Therefore, it is judgment that the higher the concentration of boron solutions, the higher the strength of the interconnections between PVA and boron.

  • PDF

Analysis of Nano Structure of Pure C3S Paste Subjected to High Tempurature using Atomic Pair Distribution Function (원자짝 분포함수를 이용한 순수 C3S 경화체의 고온 노출 시 나노 구조에 관한 연구)

  • Jee, Hyeonseok;Suh, Heongwon;Park, Taehoon;Bae, Sungchul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.170-171
    • /
    • 2019
  • When the cement paste in concrete is exposed to high temperatures, the mechanical performance decreases due to a series of reactions inside the cement. In this study, we investigated the change of nanostructure of $C_3S$ when $C_3S$ was exposed to high temperature using pair distribution function (PDF) based on high energy X-ray scattering. As a result of X-ray diffraction, there was no significant difference when $C_3S$ was heated at $300^{\circ}C$, but most of $Ca(OH)_2$ was decomposed into CaO at $500^{\circ}C$. In addition, it was confirmed that CaO is dominant in the nanostructure when $C_3S$ is heated to $500^{\circ}C$.

  • PDF

Effect of Carbon Nanotube Solutions Dispersed by Polycarboxylate-ester and Sodium Naphthalene-sulfonate on Mechanical Properties of Cementitous Composites (PCE 및 SNS를 이용해 분산된 MWCNT 수용액이 시멘트 복합체의 역학적 성능에 미치는 영향)

  • Park, Sung-Hwan;Kim, Ji-Hyun;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.61-62
    • /
    • 2022
  • Carbon nanotubes were used to secure high strength, high durability, and fracture toughness of cementitous composites.In this study, carbon nanotube dispersion solutions were prepared using commercial superplasticizers, such as polycarboxylate-ester and sodium naphthalene sulfonate with tip sonication. The solutions were used to prepare cement paste with MWCNT and The mechanical properties of the cement paste composite with MWCNT solutions were evaluated.

  • PDF

Experimental investigation of mechanical and microstructural properties of concrete containing modified nano-Graphene Oxide

  • Maryam Ashouri;Ehsanollah Zeighami;Alireza Azarioon;Seyyed Mohammad Mirhosseini;Sattar Ebrahimi Yonesi
    • Advances in nano research
    • /
    • v.16 no.5
    • /
    • pp.435-444
    • /
    • 2024
  • Microscopic defects within the microstructure of hardened cement paste are the main source of weakness in concrete. As a solution, nano-graphene oxide (GO) can be employed to improve the cement paste microstructure. However, there is a number of disadvantages, e.g., fluidity reduction and non-uniform dispersion. The present study sought to modify GO by fabricating a copolymer (PSGO) in a novel process to exploit the advantages of nano-GO while minimizing its disadvantages. Using 0.03wt% copolymerled to 38.8% higher tensile strength, 29.3% higher compressive strength and 25% higher workability. The SEM images revealed that GO and modified GO enhanced concrete by secondary hydration and bonding with C-S-H, creating a firm, integrated, and foil-like structure, and reducing the crack size and depth.

Hydration of Portland Cement Containing Blending Components by Impedance Spectroscopy (임피던스 측정에 의한 혼합재를 포함한 포틀랜드 시멘트의 수화)

  • 송종택;김훈상;배승훈
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.6
    • /
    • pp.540-549
    • /
    • 2002
  • In this work, the hydration behaviour of portland cement pastes containing fly ash, blast-furnace slag and silica fume is investigated by Impedance Spectroscopy(IS). As fly ash or blast-furnace slag was added to portland cement, the values of R$_{t(s+1)}$ and R$_{t(s+1)}$ were decreased in the early hydration period. It showed that hydration of cement containing blending components was slower than it of the reference cement paste with the same W/C ratio. However, the cement paste containing silica fume had a large value of R$_{t(s+1)}$ and R$_{t(int)}$due to very rapid pozzolanic reactivity of silica fume in the hydration time. In OPC-fly ash system, a characteristic plateau region appeared between straight-line and semicircle. The plateau region continued to grow in range with the content of fly ash and the hydration time.

Experimental Study on Setting Time of Cement Paste Mixed Accelerating Admixtures (급결제를 혼합한 시멘트페이스트의 응결시간에 관한 실험적 연구)

  • Heo Gweon;Choi Hong-Shik;Yi Seong-Tae
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.879-884
    • /
    • 2005
  • The setting time is a very important factor affecting the quality of tunnel lining and reinforcement of inclined slope etc. Currently, however, the quality criteria of accelerating admixture to improve it is not established well. In this study, evaluation on setting time measuring methods of cement mixed a accelerating admixture (AA) was performed using Gillmore and Vicat needle test methods. For both test methods, the setting time for addition at a time was better than post addition regardless of initial setting and final setting. For Gillmore needle test method, two types of measuring methods were selected and it is noted that setting time with cement type under the same accelerating admixture can be different. Accordingly, manufacturing company shall develop a less sensitive accelerating admixture to cement type. For Vicat needle test method, six types of measuring methods were used and a proper measuring method of the admixture were proposed as follows: (1) the temperature of materials used shall be controlled exactly and (2) to evaluate its properties, an admixture usage of $5\%$ (ratio of cement weight) is recommended.

Evaluation on Compressive Strength Development and Thermal Conductivity of Cement Pastes Containing Aerogels with Hydrophilic Surface Treatment (친수성 표면개질의 에어로겔을 혼입한 시멘트 페이스트의 압축강도 발현 및 열전도율 평가)

  • Ahn, Tae-Ho;Park, Jong-Beom;Yoon, Hyun-Sub;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.1
    • /
    • pp.51-57
    • /
    • 2018
  • The objective of the present study is to examine the feasibility on the development of high-insulation concrete using aerogels with hydrophilic surface treatment. To prevent the segregation and enhance the dispersibility of agerogels in the cement pastes, the substrate of aerogels was modified to be hydrophobic property using surfactant. The modified aerogels were added from 0% to 100% of the cement volume at the interval of 25% under the constant cement content. Some cement pastes showed segregation phenomenon and flocculation of aerogels during mixing phase. The addition of aerogels decreased the compressive strength of cement pastes but enhanced the thermal conductivity. The thermal conductivity of pastes with 100% aerogels was lower by 43% when compared with that measured in the conventional paste. To improve the compressive strength and insulation capacity of concrete containing aerogels, a reliable surface treatment method of aerogels needs to be further investigated.

Compressive strength properties of concrete using Waste Concrete Powder as a cement substitute (폐콘크리트 미분말을 시멘트 대체제로 활용한 콘크리트의 압축강도 특성)

  • Kim, Young-Kyu;Jung, Ui-In;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.128-129
    • /
    • 2015
  • Recently, a number of problems due to the CO2 emissions are occurred. Therefore, it is a movement to restrict this activity. The research is being carried out steadily for recycling waste concrete from the cement paste based fine powder, which accounts for over 60% of construction waste as a recycled cement. In this study, the conclusion was obtained as a result of the research conducted, and then, replacing the main material of cement concrete to solve the above problem by reducing the amount of cement used Waste Concrete Powder. The more concrete results page replacement ratio of fine powder increases, the flow value of the concrete is lowered, the strength was remarkably reduced when the page Concrete Powder.

  • PDF