• Title/Summary/Keyword: Cement-based filler

Search Result 19, Processing Time 0.025 seconds

A Study on Bond Strength of Cement-Based Filler and Flexural Strength of RC Beam Strengthened with GFRP by Filler Thickness (시멘트계 충진제의 접착 성능 및 보강 두께에 따른 GFRP 보강 RC보의 휨 성능에 대한 연구)

  • Choi, Ha-Jin;Choi, Young-Woong;Park, Jong-Chul;Jung, Si-Young;Choi, Oan-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.144-152
    • /
    • 2010
  • In this study, cement-based filler is used as an adhesive instead of organic adhesive, epoxy because there were problems under wet condition. First, the bond strength of cement-based filler was measured and the result was satisfied with KS F 4716. However, in case of wet condition, bond strength of epoxy adhesive decreased $0.73N/mm^2$ in 7 days and $0.84N/mm^2$ in 14 days from pilot test. This implies that there would be a problem on reinforced concrete structure in wet condition, such as tunnel and sewage box. In the second experiment, the flexural strength of RC beams with GFRP using different thickness of cement-based filler was investigated, and the result was indicated 113%, 66%, 75% increase in 10mm, 20mm, 30mm thickness, respectively. From the result, it was known that 10mm filler thickness produces stable bond performance.

Effects of Dolomite Fine Aggregate and Cement-Based Materials on Viscosity Characteristics, Flow and Flow Time of High-Strength Grout (돌로마이트 잔골재와 시멘트계 재료의 용적 구성비가 고강도 그라우트의 점도 특성, 플로우 및 유하시간에 미치는 영향)

  • Jeong, Min-Gu;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.197-198
    • /
    • 2023
  • This study was conducted as part of research and development of high-strength grout. Accordingly, dolomite aggregate was used as a filler incorporated into the high-strength grout. Dolomite aggregate has a disadvantage of increasing the viscosity of the grout due to higher generation of fine powder than other aggregates. Accordingly, in this experiment, it was confirmed that the viscosity, flow time, and flow of high-strength grout change according to the volume composition ratio of dolomite aggregate and cement-based material. All experiments were conducted based on the Korean Industrial Standard KS F 4044, and the mixing factor was applied according to the composition ratio of the binder and the filler. In the experiment, the amount of fine powder contained in the dolomite aggregate rather than the silica sand used in the past is grasped, and after mixing with the grout accordingly, the mixture is proceeded to measure the viscosity in an unhardened state. In addition, the flow and flow time of the grout are evaluated according to the viscosity. As a result of the experiment, it was confirmed that the viscosity and flow time decreased and the flow increased as the volume composition ratio of the dolomite aggregate to the cement-based material increased.

  • PDF

Evaluation of TDF ash as a Mineral Filler in Asphalt Concrete (TDF ash를 채움재로 사용한 아스팔트 콘크리트 물성 평가)

  • Choi, MinJu;Lee, JaeJun;Kim, HyeokJung
    • International Journal of Highway Engineering
    • /
    • v.18 no.4
    • /
    • pp.29-35
    • /
    • 2016
  • PURPOSES : The new waste management policy of South Korea encourages the recycling of waste materials. One material being recycled currently is tire-derived fuel (TDF) ash. TDF is composed of shredded scrap tires and is used as fuel in power plants and industrials plants, resulting in TDF ash, which has a chemical composition similar to that of the fly ash produced from coal. The purpose of this study was to evaluate the properties of an asphalt concrete mix that used TDF ash as the mineral filler. METHODS : The properties of the asphalt concrete were evaluated for different mineral filler types and contents using various measurement techniques. The fundamental physical properties of the asphalt concrete specimens such as their gradation and antistripping characteristics were measured in accordance with the KS F 3501 standard. The Marshall stability test was performed to measure the maximum load that could be supported by the specimens. The wheel tracking test was used to evaluate the rutting resistance. To investigate the moisture susceptibility of the specimens, dynamic immersion and tensile strength ratio (TSR) measurements were performed. RESULTS : The test results showed that the asphalt concrete containing TDF ash satisfied all the criteria listed in the Guide for Production and Construction of Asphalt Mixtures (Ministry of Land, Infrastructure and Transport, South Korea). In addition, TDF ash exhibited better performance than that of portland cement. The Marshall stability of the asphalt concrete with TDF ash was higher than 7500 N. Further, its dynamic stability was also higher than that listed in the guide. The results of the dynamic water immersion and the TSR showed that TDF ash shows better moisture resistance than does portland cement. CONCLUSIONS : TDF ash can be effectively recycled by being used as a mineral filler in asphalt, as it exhibits desirable physical properties. The optimal TDF ash content in asphalt concrete based on this study was determined to be 5%. In future works, the research team will compare the characteristics of asphalt concrete as function of the mineral filler types.

Predicting Compressive Strength of Fly Ash Mortar Considering Fly Ash Fineness (플라이 애시 미세도를 고려한 플라이 애시 모르타르의 압축 강도 예측)

  • Sun, Yang;Lee, Han-seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.90-91
    • /
    • 2020
  • Utilization of upgraded fine fly ash in cement-based materials has been proved by many researchers as an effective method to improve compressive strength of cement based materials at early ages. The addition of fine fly ash has introduced dilution effect, enhanced pozzolanic reaction effect, nucleation effect and physical filling effect into cement-fly ash system. In this study, an integrated reaction model is adpoted to quantify the contributions from cement hydration and pozzolanic reaction to compressive strength. A modified model related to the physical filling effect is utilized to calculate the compressive strength increment considering the gradual dissolution of fly ash particles. Via combination of these two parts, a numerical model has been proposed to predict the compressive strength development of fine fly ash mortar considering fly ash fineness. The reliability of the model is validated through good agreement with the experimental results from previous articles.

  • PDF

Conductive Performance of Mortar Containing Fe-Activated Biochar (Fe에 의해 활성화된 목질계 바이오차를 혼입한 모르타르의 전도성능)

  • Jin-Seok Woo;Ai-Hua Jin;Won-Chang Choi;Soo-Yeon Seo;Hyun-Do Yun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.27-34
    • /
    • 2024
  • This study was conducted to examine the feasibility of using Fe-activated wood-derived biochar as a conductive filler for manufacturing cement-based strain sensor. To evaluate the compressive and electrical properties of cement composite with 3% Fe-activated biochar, three cubic specimens of size 50 x 50 x 50mm3 and three prismatic cement-based sensors of size 40 x 40 x 80mm3 were prepared respectively. The four-probe method of electrical resistance measurement was used for cement-based sensors. For cement-based sensors with FE-activated biochar, the conductive performance such as electrical resistance and impedance under different water content and repeated compression was investigated. Results showed that the fractional changes in the DC electrical resistivity of cement-based sensors increase with increasing time and the maximum fractional changes in the resistivity decrease with increasing the moisture contents during 900s. At moisture content of 7.5% range, the conductive performance of cement composite including 3% Fe-activated biochar as a conductive filler showed the most stable, while the strain detection ability tended to decrease somewhat as the repeated compressive stress increased between repeated compressive strain and fractional change in resistivity (FCR).

Replacing C3S cement with PP fibre and nanobiosilica in stabilisation of organic clays

  • Soheil Ghadr;Arya Assadi-Langroudi;Hadi Bahadori
    • Geomechanics and Engineering
    • /
    • v.33 no.4
    • /
    • pp.401-414
    • /
    • 2023
  • Organic clays are ideal habitat for flora and fauna. From a geotechnical perspective, organic clays are soft, weak, variable, heterogeneous and flocculated. Portland cement is a universally common stabiliser. However, some organic acids in soil inhibit full hydration and expose cementation products to rapid dissolution. This paper investigates scopes for use of C3S cement to enable durable cementation. Prospects of using PP fibre alongside with C3S cement, scopes for partial replacement of C3S cement with a plant-based nanosilica and evolution of binders are then investigated. Binding mixtures here mimic the natural functions of rhizoliths, amorphous phases, and calcites. Testing sample population include natural and fibre-reinforced clays, compact mixes of clay - C3S cement, clay - nanobiosilica, and clay, C3S cement and nanobiosilica. Benefits and constraints of C3S cement and fibres for retaining the naturally flocculated structure of organic clays are discussed. Nanobiosilica provides an opportunity to cut the C3S content, and to transition of highly compressive organic clays into an engineered, open-structured medium with >0.5 MPa compressive strength across the strains spanning from peak to 1.5-times peak.

Strength and durability of ultra fine slag based high strength concrete

  • Sharmila, Pichaiya;Dhinakaran, Govindasamy
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.675-686
    • /
    • 2015
  • The use of ground granulated blast furnace slag (GGBFS) from steel industries waste is showing perspective application in civil engineering as partial substitute to cement. Use of such waste conserves natural resources and minimizes the space required for landfill. The GGBFS used in the present work is of ultra fine size and hence serves as micro filler. In this paper strength and durability characteristics of ultra fine slag based high strength concrete (HSC) (with a characteristic compressive strength of 50 MPa) were studied. Cement was replaced with ultra fine slag in different percentages of 5, 10, and 15% to study the compressive strength, porosity, resistances against sulfate attack, sorptivity and chloride ion penetration. The experiments to study compressive strength were conducted for different ages of concrete such as 7, 28, 56, and 90 days. From the detailed investigations with 16 mix combinations, 10% ultra fine slag give better results in terms of strength and durability characteristics.

Preparation and Characterization of the Mine Residue-based Geopolymeric Ceramics (광미를 이용한 지오폴리머 세라믹제조 및 물성)

  • Son, Se-Gu;Lee, Woo-Keun;Kim, Young-Do;Kim, Kyung-Nam
    • Korean Journal of Materials Research
    • /
    • v.21 no.9
    • /
    • pp.502-508
    • /
    • 2011
  • The goal of the present work was to investigate the development of a geopolymeric ceramic material from a mixture of mine residue, coal fly ash, blast furnace slag, and alkali activator solution by the geopolymer technique. The results showed that the higher compressive strength of geopolymeric ceramic material increased with an increase in active filler (blast furnace slag + coal fly ash) contents and with a reduction of mine residue contents. The geopolymeric ceramic had very high early age strength. The compressive strength of the geopolymeric ceramic depended on the added active filler content. The maximum compressive strength of the geopolymeric ceramic containing 20 wt.% mine residue was 141.2 MPa. The compressive strength of geopolymeric ceramic manufactured by adding mine residue was higher than that of portland cement mortar, which is 60 MPa, when cured for 28 days. SEM observation showed the possibility of having amorphous aluminosilicate gel within geopolymeric ceramic. XRD patterns indicate that the geopolymeric ceramic was composed of amorphous aluminosilicate, calcite, quartz, and muscovite. The Korea Standard Leaching Test (KSLT) was used to determine the leaching potential of the geopolymeric ceramic. The amounts of heavy metals were noticeably reduced after the solidification of mine residue with active filler.

An investigation on the mortars containing blended cement subjected to elevated temperatures using Artificial Neural Network (ANN) models

  • Ramezanianpour, A.A.;Kamel, M.E.;Kazemian, A.;Ghiasvand, E.;Shokrani, H.;Bakhshi, N.
    • Computers and Concrete
    • /
    • v.10 no.6
    • /
    • pp.649-662
    • /
    • 2012
  • This paper presents the results of an investigation on the compressive strength and weight loss of mortars containing three types of fillers as cement replacements; Limestone Filler (LF), Silica Fume (SF) and Trass (TR), subjected to elevated temperatures including $400^{\circ}C$, $600^{\circ}C$, $800^{\circ}C$ and $1000^{\circ}C$. Results indicate that addition of TR to blended cements, compared to SF addition, leads to higher compressive strength and lower weight loss at elevated temperatures. In order to model the influence of the different parameters on the compressive strength and the weight loss of specimens, artificial neural networks (ANNs) were adopted. Different diagrams were plotted based on the predictions of the most accurate networks to study the effects of temperature, different fillers and cement content on the target properties. In addition to the impressive RMSE and $R^2$ values of the best networks, the data used as the input for the prediction plots were chosen within the range of the data introduced to the networks in the training phase. Therefore, the prediction plots could be considered reliable to perform the parametric study.

Durability Enhancement in Nano-Silica Admixed Reinforced Mortar

  • Saraswathy, Velu;Karthick, Subbiah;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.297-306
    • /
    • 2014
  • Recently nano-materials are gaining more importance in the construction industry due to its enhanced energy efficiency, durability, economy, and sustainability. Nano-silica addition to cement based materials can control the degradation of the fundamental calcium-silicate-hydrate reaction of concrete caused by calcium leaching in water as well as block water penetration and therefore lead to improvements in durability. In this paper, the influence of synthesized nano silica from locally available rice husk on the mechanical properties and corrosion resistant properties of OPC (Ordinary Portland Cement) has been studied by conducting various experimental investigations. Micro structural properties have been assessed by conducting Scanning Electron Microscopy, Thermo gravimetry and Differential Thermal Analysis, X-Ray Diffraction analysis, and FTIR studies. The experimental results revealed that NS reacted with calcium hydroxide crystals in the cement paste and produces Calcium Silicate Hydrate gel which enhanced the strength and acts as a filler which filled the nano pores present in concrete. Hence the strength and corrosion resistant properties were enhanced than the control.