• Title/Summary/Keyword: Cement volume

Search Result 562, Processing Time 0.029 seconds

Effect of Fiber Volume Fraction on Bond Properties of Structural Synthetic Fiber in Polypropylene Fiber Reinforced Cement Composites (폴리프로필렌섬유보강 시멘트 복합재료에 정착된 구조용 합성섬유의 부착거동에 미치는 섬유 혼입률의 효과)

  • Lee, Jin Hyeong;Park, Chan Gi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.125-135
    • /
    • 2011
  • The bond properties between polypropylene fiber reinforced cement composites and structural synthetic fiber have been investigated. in this paper. Three levels of polypropylene fibers volume fraction were used, 0.10%, 0.15%, and 0.20% in a series of Dog-bone pull out tests. The bond strength between structural synthetic fiber and polypropylene fiber reinforced cement composites increases with the volume fraction of polypropylene fiber, but the bond strength decreases above the amount of 0.20% by volume of polypropylene fiber reinforced cement composites. Also, the addition of polypropylene fiber a significant improved the interface toughness and the frictional resistance, The microstructure of structural synthetic fiber surface was investigated after the pullout test. The scratched of structural synthetic fiber increased with the polypropylene fiber volume fraction.

Repeat Vertebroplasty for the Subsequent Refracture of Procedured Vertebra

  • Choi, Sang Sik;Hur, Won Seok;Lee, Jae Jin;Oh, Seok Kyeong;Lee, Mi Kyoung
    • The Korean Journal of Pain
    • /
    • v.26 no.1
    • /
    • pp.94-97
    • /
    • 2013
  • Vertebroplasty (VP) can effectively treat pain and immobility caused by vertebral compression fracture. Because of complications such as extravasation of bone cement (polymethylmethacrylate, PMMA) and adjacent vertebral fractures, some practitioners prefer to inject a small volume of PMMA. In that case, however, insufficient augmentation or a subsequent refracture of the treated vertebrae can occur. A 65-year-old woman visited our clinic complaining of unrelieved severe low back and bilateral flank pain even after she had undergone VP on the $1^{st}$ and $4^{th}$ (L1 and L4) lumbar vertebrae a month earlier. Radiologic findings showed the refracture of L1. We successfully performed the repeat VP by filling the vertebra with a sufficient volume of PMMA, and no complications occurred. The patient's pain and immobility resolved completely three days after the procedure and she remained symptom-free a month later. In conclusion, VP with small volume cement impaction may fail to relieve fracture-induced symptoms, and the refracture of an augmented vertebral body may occur. In this case, repeat VP can effectively resolve both the persistent symptoms and problems of new onset resulting from refracture of the augmented vertebral body due to insufficient volume of bone cement.

Effect of Polyvinyl Alcohol Fiber Volume Fraction on Pullout Behavior of Structural Synthetic Fiber in Hybrid Fiber Reinforced Cement Composites (하이브리드 섬유 보강 시멘트 복합 재료에서 구조용 합성 섬유의 인발 거동에 미치는 폴리비닐 알코올 섬유 혼입률의 효과)

  • Lee, Jin-Hyung;Park, Chan-Gi
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.461-469
    • /
    • 2011
  • In this study, the effect of polyvinyl alcohol (PVA) fiber volume fraction on the pullout behavior of structural synthetic fiber in hybrid structural synthetic fiber and PVA fiber cement composites are presented. Pullout behavior of the hybrid fiber cement composites and structural synthetic fiber were determined by dog-bone bond tests. Test results found that the addition of PVA fiber can effectively enhance the structural synthetic fiber cement based composites pullout behavior, especially in fiber interface toughness. Pullout test results of the structural synthetic fiber showed the interface toughness between structural synthetic fiber and PVA fiber reinforced cement composites increases with the volume fraction of PVA fiber. The microstructural observation confirms the incorporation of PVA fiber can effectively enhance the interface toughness mechanism of structural synthetic fiber and PVA fiber reinforced cement composites.

Experimental Study on Fundamental Quality Characteristics of Non-cement Repair Mortar Using High-volume Fly Ash Based on Potassium Magnesia Phosphate (마그네시아-인산칼륨 기반 하이볼륨 플라이애시 활용 무시멘트 보수 모르타르의 기초 품질 특성에 대한 실험적 연구)

  • Doo-Won Lee;Il-Young Jang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.152-161
    • /
    • 2024
  • This paper investigates the manufacturing and fundamental quality characteristics of potassium magnesia phosphate-based non-cement high-volume fly ash repair mortar. To derive the optimal mix for non-cement mortar, the manufacturing characteristics were evaluated based on the magnesia ratio, and the mortar manufacturing characteristics were assessed with the fly ash mixture. Additionally, the non-cement magnesia repair mortar was produced considering the effects of fly ash mixture and basalt fiber. The evaluation results determined the optimal mix of non-cement magnesia repair mortar, and the feasibility was examined through workability and fundamental quality assessments. The optimal magnesia ratio was found to be P:M 1:0.5, with W/B at 30 %. It was also confirmed that mixing FA and basalt fiber improves fiber dispersion and workability. Even with over 50 % FA mixture, the target strength was achieved within six hours, with a flow increase of up to 18 % and a flexural strength decrease of about 1-2 MPa.

Influence of fly ash and GGBFS on the pH value of cement mortar in different curing conditions

  • Shafigh, Payam;Yousuf, Sumra;Ibrahim, Zainah;Alsubari, Belal;Asadi, Iman
    • Advances in concrete construction
    • /
    • v.11 no.5
    • /
    • pp.419-428
    • /
    • 2021
  • The pH of cement-based materials (CBMs) is an important factor for their durability, sustainability, and long service life. Currently, the use of supplementary cementitious materials (SCMs) is becoming mandatory due to economic, environmental, and sustainable issues. There is a decreasing trend in pH of CBMs due to incorporation of SCMs. The determination of numerical values of pH is very important for various low and high volume SCMs blended cement mortars for the better understanding of different defects and durability issues during their service life. In addition, the effect of cement hydration and pozzolanic reaction of SCMs on the pH should be determined at initial and later ages. In this study, the effect of low and high-volume fly ash (FA) and ground granulated ballast furnace slag (GGBFS) cement mortars in different curing conditions on their pH values has been determined. Thermal gravimetric analysis (TGA) was carried out to support the findings from pH measurements. In addition, thermal conductivity (k-value) and strength activity indices of these cement mortars were discussed. The results showed that pH values of all blended cement mortars were less than ordinary Portland cement (OPC) mortar in all curing conditions used. There was a decreasing tendency in pH of all mortars with passage of time. In addition, the pH of cement mortars was not only dependent on the quantity of Ca(OH)2. The effect of adding SCMs on the pH value of cement mortar should be monitored and measured for both short and long terms.

Durability Characteristics of Low Strength Fly ash-Cement Composites (저강도 플라이애시-시멘트 복합체의 내구특성)

  • 원종필;신유길;이용수;안태송
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.142-147
    • /
    • 2000
  • Durability characteristics of controlled low strength material(flowable fill) with high volume fly ash content was examined. The mix proportions used for flowable fill are selected to obtain low-strength material in the 10 to 15kgf/㎥ range. The optimized flowable fill was consisted of 60kgf/㎥ cement content, 280kgf/㎥ fly ash content, 1400kgf/㎥sand content, and 320kgf/㎥water content. Subsequently, durability tests including permeability warm water immersion, repeated wetting & drying, freezing & thawing for high volume fly ash-flowable fill are conducted The test results indicated that flowable fill has has acceptable durability characteristics.

  • PDF

Comparative Study on a Special Low-Porosity Portland Cement (저 기공성 특수 포틀랜드 시멘트에 대한 비교연구)

  • 장복기
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.5
    • /
    • pp.532-540
    • /
    • 1988
  • Even the finest cement as having a specific surface area of 6.000~8.500$\textrm{cm}^2$/g (Blaine) is to convert into low-porosity hardened cement paste by the use of appropriate plasticizer. In this study, tests were carried out on such a special cement mix(fineness of 6.000$\textrm{cm}^2$/g, Ca-lignosulfonate plus k2CO3 as plasticizer and W/C=0.25) in comparison with ordinary Portland cement. Owing mainly to the high fineness of the cement powder and the low water-to-cement ratio, the hardened low-porosity cement paste showed a very tight microstructure, the pore texture of which consisted of micropores and wide pores only of small radii. The consequence of such mix was hence that the low-porosity special cement had excellent properties of early-high and very high strengths as compared to ordinary Portland cement. Its volume change when dried in the air or re-wetted, exhibited superor behaviour as well.

  • PDF

An Experimental Study on the Fluidity Properties of High Flowing Concrete Affected by Size and Volume Ratio of Coarse Aggregate (조골재 크기 및 용적비에 의한 고유동콘크리트의 각종 유동특성에 관한 실험적 연구)

  • 최세진;김완영;김진만;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.258-261
    • /
    • 1998
  • Aggregate is cheaper than cement and confers considerable technical advantages on concrete, which has a higher volume stability and better durability than hydrated cement paste alone. and coarse aggregate is the largest particle size out of concrete and is much affect on the fruidity, compaction and non-segregation ability of high flowing concrete. As the compaction, fillingability and shrinkage of high flowing concrete, the volume ratio of coarse aggregate is prescribed by Japanese Architectural Standard Specificateon (JASS 5) : from 0.500 to 0.500㎥/㎥. It is the aim of this study to compare and analysis the fruidity, fillingability and non-segregation of high flosing concrete according to the volume ratio of coarse aggregate of concrete(G/Glim).

  • PDF

A Fundamental Study on the Mix Design in High Volume Fly-Ash Concrete (플라이애시를 대량 사용한 콘크리트의 배합설계를 위한 기초적 연구)

  • 심재형;김재환;최희용;강석표;최세진;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.641-646
    • /
    • 2001
  • Generally, when Fly-Ash was used as replacement material of cement in concrete, it might occur retardation of setting and hardening. So, it is unable to use a large amount of Fly-Ash as replacement for cement. However, if it is used as replacement material of fine aggregate in concrete, we can use a large amount of Fly-Ash and settle a problem of natural-aggregate exhaustion. Furthermore, engineering properties of High Volume Fly-Ash Concrete Is better than that of plain concrete But, the larger Fly-Ash is replaced, the more fluidity of High Volume Fly-Ash Concrete decrease, because porous organization of Fly-Ash adsorb water and Superplasticizer. In this study, after appending additional water to High Volume Fly-Ash Concrete in proportion to weight of Fly-Ash, we intend to find proper ratio which doesn't affect strength and satisfy fluidity As a result of this study, it was found that fluidity of mortar with 25~28 percentage of additional water was satisfied with fluidity of plain mortar, and compressive strength of that was similar to plain mortar's

  • PDF

Improvement of bond strength and durability of concrete incorporating high volumes of class F fly ash

  • Wu, Chung-Hao;Chen, Chien-Jung;Lin, Yu-Feng;Lin, Shu-Ken
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.367-375
    • /
    • 2021
  • This study experimentally investigated the improvement of bond strength and durability of concrete containing high volume fly ash. Concrete mixtures made with 0%, 25% and 60% replacement of cement with class F fly ash were prepared. Water-binder ratios ranged from 0.28 to 0.72. The compressive, flexural and pullout bond strength, the resistance to chloride-ion penetration, and the water permeability of concrete were measured and presented. Test results indicate that except for the concretes at early ages, the mechanical properties, bond strength, and the durability-related chloride-ion permeability and water permeability of concrete containing high volume (60% cement replacement) fly ash were obviously superior to the concrete without fly ash at later ages of beyond 56 days. The enhanced bond strength for the high volume fly-ash concrete either with or without steel confinement is a significant finding which might be valuable for the structural application.