• 제목/요약/키워드: Cement concrete

검색결과 4,038건 처리시간 0.045초

Reduction of cement consumption by producing smart green concretes with natural zeolites

  • Trung, Nguyen Thoi;Alemi, Nima;Haido, James H.;Shariati, Mahdi;Baradaran, Seyedata;Yousif, Salim T.
    • Smart Structures and Systems
    • /
    • 제24권3호
    • /
    • pp.415-425
    • /
    • 2019
  • This study was carried out to evaluate the natural zeolite in producing green concrete as an effort to prevent global warming and environmental impact problems of cement industries. To achieve this target, two types of natural zeolites applied to study physical, chemical and compressive strength of concrete containing different percentages of zeolites. The results in comparison with control samples indicate that compressive strength of zeolites mixes increases with the 15% replacement of zeolite instead of cement in all types of samples. In the water-cement ratio of 0.6, results showed an increase in the compressive strength of all percentages of replacement. This results indicate that using natural zeolites could be produced a green concrete by a huge reduction and saving in the consumption of cement.

Ready mixed concrete behavior of granulated blast furnace slag contained cement

  • Karim, M. Razaul;Islam, A.B.M. Saiful;Chowdhury, Faisal I.;Rehman, Sarder Kashif Ur;Islam, Md. Rabiul
    • Computers and Concrete
    • /
    • 제21권2호
    • /
    • pp.139-147
    • /
    • 2018
  • Due to enhanced construction requirement, ready mixed concrete are being popular day by day. The current study aimed to develop ready mixed concrete using GBFS contained cement and determine its properties of fresh and hardened states. A real scale experiment was set up in a ready mixed plant for measuring workability and compressive strength. The workability was tested after mixing (within 5 minutes), 30, 60, 90, 120 and 150 minutes of the running of bulk carrier. The ready mixed carrier employed spinning motion i.e., rotating around its axis with 20 RPM and running on road with 1km/h speed. The mixing ratio of cement: sand:gravel, water to cement ratio, super plasticizer were, 1:1.73:2.47, 0.40 and 6% of cement, respectively. The chemical composition of raw material was determined using XRF and the properties of cements were measured according to ASTM standards. The experimental results confirm that the cement with composition of 6.89% of GBFS, 4% of Gypsum and 89.11% of clinker showed the good compressive strength and workability of concrete after 150 minutes of the spinning motion in bulk carrier.

고강도콘크리트에서 폴리머 시멘트 슬러리 도장철근의 인발부착특성 (Pull-Out Bond Properties of Polymer Cement Coated Rebars in HSC)

  • 김민호;김완기;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.215-220
    • /
    • 2002
  • Epoxy-coated re-bar was partly used to the structures and put to practical use, but were not economical and appeared to have defects such as the diminishing of long term bond strength between concrete. The study of polymer cement slurry coated re-bar was started in order to complement the defect of epoxy coated re-bar, and ever since the basic properties appeared to be excellent. But, study of bond properties embedded in concrete specimens was insufficient until now. This study attempts to examine the possibility of improving the bond strength of polymer cement slurry coated re-bar between concrete specimens in accordance with ACI Code and KS Code through pull-out test of 150mm$\times$150mm$\times$150mm substrates with polymer cement slurry coated re-bar having polymer cement ratios of 50%, 75% and 100%, coating thickness 250${\mu}{\textrm}{m}$, 450 ${\mu}{\textrm}{m}$ and with curing ages of 3, 7 and 28 days. High strength concrete was designed having a compressive strength of 500kgf/cm2 as specified. Practical bond length ranges of 55 and 85mm were applied to each of specimen. The bond strength of polymer cement slurry coated re-bar using St/BA-1 and St/BA-2 was compared to that of plain re-bar. The results of this study showed that the bond strength of 55mm bond length was much higher than that of 85mm bond length.

  • PDF

삼각조성도를 통한 3성분계 무시멘트 콘크리트의 압축강도 특성 연구 (A Study on the Compressive Strength Properties of the Ternary Blended Non-Cement Concrete using Ternary Diagram)

  • 정유진;김영수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제24권2호
    • /
    • pp.41-49
    • /
    • 2020
  • 상온에서 발생하는 1, 2성분계 무시멘트 콘크리트의 강도저하 문제를 개선하기 위해 시멘트를 실리카 흄, 플라이애시, 고로슬래그 미분말로 치환한 3성분계 무시멘트 콘크리트의 슬럼프와 압축강도 특성을 통해 비교분석을 실시하여 다음과 같은 결론을 얻었다. 3성분계 무시멘트 콘크리트는 2성분계에 비해 높은 압축강도를 나타냈으며 실리카 흄을 10% 혼입한 경우 슬럼프 감소가 적은 것으로 나타났다. 또한, 삼각조성도를 통해 슬럼프 및 압축강도 수준별 각 무기결합재의 적정 구성비율 범위를 제시하였다.

고로슬래그시멘트를 사용한 다공성 황토콘크리트의 성능 평가 (Performance Evaluation of Porous Hwang-toh Concrete Using Blast Furnace Slag Cement)

  • 김황희;강수만;박종식;박상우;전지홍;이진형;차상선;박찬기
    • 한국농공학회논문집
    • /
    • 제52권3호
    • /
    • pp.9-17
    • /
    • 2010
  • This study aims to evaluate a porous concrete using hwang-toh, blast furnace slag and blast furnace slag (BFS) cement instead of type I cement. The tests that were carried out to analysis the properties of porous hwang-toh BFS cement concrete included compressive strength, continuous void ratio, absorption rate, and pH value, repeated freezing and thawing test were conducted. Test results indicated that the performance in porous hwang-toh concrete are effective on the kaoline based binder materials. The pH value were shown in about 9.5 ~ 8.5. The compressive strength was increased and void ratio was decreased with increasing the kaoline based binder materials, respectively. The void ratio and compressive strength were in the range of about 21 ~ 30 %, 8 ~ 13 MPa, respectively. The increased in void ratio of more than 25 % is showed to reduce the resistance of repeated freezing and thawing. Also, the resistance of repeated freezing of thawing and the compressive strength of porous hwang-toh BFS cement concrete are independent with hwang-toh content and BFS cement amount. But, the void ratio was decreased with increasing the high volume hwang-toh contents (more than 15 %).

저발열형 시멘트 콘크리트의 염소이온 침투$\cdot$확산에 대한 저항성 (The Resistance of Penetrability and Diffusion of Chloride Ion in Blended Low Heat Type Cement Concrete)

  • 문한영;신화철
    • 콘크리트학회논문집
    • /
    • 제11권4호
    • /
    • pp.31-41
    • /
    • 1999
  • Blended Low Heat type cement is ground granulated blast furnace slag and fly ash mixed ternary with ordinary portland cement. From the viewpoint of X-ray patterns of domestic LHC, the main components of cement such as $C_2$S, $C_3$A, $C_3$S are considerably reduced. Therefore the heat evolution of LHC paste is 42cal/g lower than of OPC paste. At early age, the compressive strength development of LHC concrete is delayed, but the slump loss ratio of fresh concrete is reduced more than 20% with elapsed time. The penetrability of LHC is lower than that of OPC by 1/7.8 with the penetrability of chloride ion into the concrete until the age of 120 days. And the PD Index value of LHC is 0.44$\times$10-6 $\textrm{cm}^2$/s, which indicates only 39.3% of OPC. From the Mercury Intrusion Porosimetry test of cement past, we know that the pore size of LHC is more dense than that of OPC by production of C-S-H.

폴리에틸렌 튜브를 혼입한 경량 시멘트 경화체의 기초물성 평가 (An Evaluation on the Properties of the Hardened Lightweight Cement Using the Polyethylene Tube)

  • 김세영;전봉민;김효열;오상균
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2006년도 추계 학술논문 발표대회 논문집
    • /
    • pp.57-60
    • /
    • 2006
  • This study proposes the physical properties of the hardened lightweight cement using the polyethylene tube and to make the fundamental data regarding a new lightweight concrete development. The aerated concrete is displaying various effects such as lightweight, insulation characteristic and it is coming to be widely applied the slab layer of apartment as an insulating material but currently the aerated concrete has many problems. Therefore, demonstrating similar property of former aerated concrete and improving the defects, developing new hardened cement is needed. In this study, we predict adopting possibility of hollow core polyethylene tube, as a material to make cement hardening containing a lot of void. So we changed the mixing ratio, a diameter and length of the polyethylene tube and improved the compressive strength and unit capacity weight of the lightweight cement hardening body. From the test results, we judge that the aerated concrete is a developmental possibility.

  • PDF

The effects of different cement dosages, slumps and pumice aggregate ratios on the freezing and thawing of concrete

  • Turkmen, Ibrahim;Demirboga, Ramazan;Gul, Rustem
    • Computers and Concrete
    • /
    • 제3권2_3호
    • /
    • pp.163-175
    • /
    • 2006
  • This research was conducted to determine effect of pumice aggregate ratio, cement dosage and slumps on freeze-thaw resistance, density, water absorption and elasticity of concrete. In the first batch, $300kg/m^3$ cement dosage were kept constant and pumice ratios were changed as 25%, 50%, 75% and 100% of replacement for normal aggregate by volume for $3{\pm}1cm$, $5{\pm}1cm$ and $7{\pm}1cm$ slumps. Other batches were prepared with $200kg/m^3$, $250kg/m^3$, $350kg/m^3$, $400kg/m^3$ and $500kg/m^3$ cement dosages and 25% pumice aggregate +75% normal aggregate at a constant slump. Test results showed that when pumice-aggregate ratio decreased the density and freeze-thaw resistance of concretes increased. With increasing of cement dosage in the mixtures, density of the concretes increased, however, freeze-thaw resistance of concretes decreased. Water absorption of the concrete decreased with increasing cement dosage but increased with the pumice ratio. Water absorption of the concrete also decreased after freeze-thaw cycles. Freeze-thaw resistance of concretes was decreased with increasing the slumps.

Strength properties of concrete with fly ash and silica fume as cement replacing materials for pavement construction

  • Chore, Hemant Sharad;Joshi, Mrunal Prashant
    • Advances in concrete construction
    • /
    • 제12권5호
    • /
    • pp.419-427
    • /
    • 2021
  • The overuse level of cement for civil industry has several undesirable social and ecological consequences. Substitution of cement with industrial wastes, called by-products, such as fly ash, ground granulated blast furnace slag, silica fume, metakaoline, rice husk ash, etc. as the mineral admixtures offers various advantages such as technical, economical and environmental which are very important in the era of sustainability in construction industry. The paper presents the experimental investigations for assessing the mechanical properties of the concrete made using the Pozzolanic waste materials (supplementary cementitious materials) such as fly ash and silica fume as the cement replacing materials. These materials were used in eight trial mixes with varying amount of ordinary Portland cement. These SCMs were kept in equal proportions in all the eight trial mixes. The chemical admixture (High Range Water Reducing Admixture) was also added to improve the workability of concrete. The compressive strengths for 7, 28, 40 and 90 days curing were evaluated whereas the flexural and tensile strengths corresponding to 7, 28 and 40 days curing were evaluated. The study corroborates that the Pozzolanic materials used in the present investigation as partial replacement for cement can render the sustainable concrete which can be used in the rigid pavement construction.

Concrete Strength Estimating at Early Ages by the Equivalent Age

  • Kim, Moo-Han;Nam, Jae-Hyun;Khil, Bae-Su
    • KCI Concrete Journal
    • /
    • 제14권2호
    • /
    • pp.81-85
    • /
    • 2002
  • The strength development of concrete is influenced by temperature and cement type which greatly affect hydration degree of cement. There is not pertinent concrete strength management method in korea. There are several methods for estimating the in-place strength of concrete. One such method is the maturity concept. The maturity concept is based on the fact that concrete gains strength gradually as a result of chemical reactions between cement and water; and for a specific concrete mixture, strength at any age and at normal conditions is related to the degree of hydration. The rate of hydration and, therefore, strength development of a given concrete will be a function of its temperature. Thus, strength of concrete depends on its time-temperature history. The goals of the present study are to investigate a relationship between strength of high-strength concrete and maturity that is expressed as a function of an integral of the curing period and temperature and predict strength of concrete.

  • PDF