• Title/Summary/Keyword: Cement compositions

Search Result 66, Processing Time 0.028 seconds

Investigation of bone formation using calcium phosphate glass cement in beagle dogs

  • Lee, Seung-Bum;Jung, Ui-Won;Choi, Youn-A;Jamiyandorj, Otgonbold;Kim, Chang-Sung;Lee, Yong-Keun;Chai, Jung-Kiu;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.3
    • /
    • pp.125-131
    • /
    • 2010
  • Purpose: Among available biomaterials, bioceramics have drawn special interest due to their bioactivity and the possibility of tailoring their composition. The degradation rate and formulation of bioceramics can be altered to mimic the compositions of the mineral phase of bone. The aim of this study was to investigate the bone formation effect of amorphous calcium phosphate glass cement (CPGC) synthesized by a melting and quenching process. Methods: In five male beagle dogs, $4{\times}4$ mm 1-wall intrabony defects were created bilaterally at the mesial or distal aspect of the mandibular second and fourth premolars. Each of the four defects was divided according to graft materials: CPGC with collagen membrane (CM), biphasic calcium phosphate (BCP) with CM, CM alone, or a surgical flap operation only. The dogs were sacrificed 8 weeks post-surgery, and block sections of the defects were collected for histologic and histometric analysis. Results: There were significant differences in bone formation and cementum regeneration between the experimental and control groups. In particular, the CPGC and BCP groups showed greater bone formation than the CM and control groups. Conclusions: In conclusion, CPGC was replaced rapidly with an abundant volume of new bone; CPGC also contributed slightly to regeneration of the periodontal apparatus.

The Effects of Elvan on Physical Properties of Cement Mortar (시멘트 모르타르의 물리적 특성에 미치는 맥반석 골재의 영향)

  • Chu, Yong-Sik;Kim, In-Seop;Lee, Jong-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.386-391
    • /
    • 2003
  • Ready mixed mortar has been originated from lime industry of Germany and is being used widely in the world at present. In recent years, the studies of mortar with new faculty have been progressed. In this study, we used elvan instead of using sand in order to make cement mortar and investigated characteristics of elvan and mortar that used elvan. The major compositions of elvan were $SiO_2$ and $Al_2O_3$. The crystal phases of elvan were composed of quartz and sillimanite. Elvan had a lot of pore and absorption ratio was 2.09%. The compressive strength of mortar that used elvan satisfied korean industrial standards under 1:3 (mixing ratio) and water retentivity increased according to increase of elvan contents. Far infrared radiation and deodorization ratio increased and thermal conductivity decreased according to increase of elvan contents.

Effect of Elevated Temperature on Mechanical Properties of Limestone, Quartzite and Granite Concrete

  • Tufail, Muhammad;Shahzada, Khan;Gencturk, Bora;Wei, Jianqiang
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.17-28
    • /
    • 2017
  • Although concrete is a noncombustible material, high temperatures such as those experienced during a fire have a negative effect on the mechanical properties. This paper studies the effect of elevated temperatures on the mechanical properties of limestone, quartzite and granite concrete. Samples from three different concrete mixes with limestone, quartzite and granite coarse aggregates were prepared. The test samples were subjected to temperatures ranging from 25 to $650^{\circ}C$ for a duration of 2 h. Mechanical properties of concrete including the compressive and tensile strength, modulus of elasticity, and ultimate strain in compression were obtained. Effects of temperature on resistance to degradation, thermal expansion and phase compositions of the aggregates were investigated. The results indicated that the mechanical properties of concrete are largely affected from elevated temperatures and the type of coarse aggregate used. The compressive and split tensile strength, and modulus of elasticity decreased with increasing temperature, while the ultimate strain in compression increased. Concrete made of granite coarse aggregate showed higher mechanical properties at all temperatures, followed by quartzite and limestone concretes. In addition to decomposition of cement paste, the imparity in thermal expansion behavior between cement paste and aggregates, and degradation and phase decomposition (and/or transition) of aggregates under high temperature were considered as main factors impacting the mechanical properties of concrete. The novelty of this research stems from the fact that three different aggregate types are comparatively evaluated, mechanisms are systemically analyzed, and empirical relationships are established to predict the residual compressive and tensile strength, elastic modulus, and ultimate compressive strain for concretes subjected to high temperatures.

Time Evolution of Water Permeability Coefficient of Carbonated Concrete (탄산화된 콘크리트의 투수계수에 대한 시간단계별 해석)

  • Yoon, In-Seok;Lee, Jeong-Yun;Cho, Byung-Young;Kim, Young-Geun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1053-1056
    • /
    • 2008
  • Permeability coefficient of concrete is a substantial key parameter for understanding the durability performance of concrete and its micro-structural densification. Many researches to deal with the issue have been accomplished, however, it is very rare to deal with the theoretical study on permeability coefficient in connection with carbonation of concrete and the effect of volumetric fraction of cement paste or aggregate on the permeability coefficient. The majority of these researches have not dealt with this issue combined with carbonation of concrete, although carbonation can significantly impact on the permeability coefficient of concrete. The purpose of this study is to establish a fundamental approach to compute the permeability coefficient of (non)carbonated concrete. When simulating micro-structural characteristics as a starting point for deriving a model for the permeability coefficient by the numerical simulation program for cementitious materials, HYMOSTRUC, a more realistic formulation can be achieved. For several compositions of cement pastes, the permeability coefficient is calculated with the analytical formulation, followed by a microstructure-based model. Emphasis is on the micro-structural changes and its effective change of the permeability coefficient of carbonated concrete. The results of micro-structural water permeability coefficient model will be compared with results achieved from permeability experiments.

  • PDF

A Durability Assessment on Complex Deterioration of Concrete with Ground Granulated Blast-Furnace Slag Replacement (복합열화 환경하에서의 고로슬래그미분말 사용 콘크리트의 내구성능 평가)

  • Lee, Seung-Hoon;Kim, Hyung-Doo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.171-175
    • /
    • 2010
  • This paper presents the experimental results of frost durability characteristics including freezing-thawing and de-icing salt scaling of the concrete for gutter of the road and marine structure. Mixtures were proportioned with the three level of water-binder ratio(W/B) and three binder compositions corresponding to Type I cement with 0%, 30% and 50% GGBS(Ground granulated blast furnace slag) replacement. Also, two different solutions of calcium chloride were used to evaluate their effect on the frost durability resistance. Specially, in case of complex of freezing and thawing with salt and carbonation, the deterioration of concrete surface is evaluated. Test results showed that the BFS30 and BFS50 mixture exhibited higher durability and lower mass loss values than those made with OPC mix and the use of GGBS can be used effectively in terms of economy and frost durability of the concrete to be in complex deterioration. Therefore, the resistance to complex deterioration with freezing-thawing was strongly influenced by the strength and the type of cement.

An experimental and analytical study of the sound wave propagation in beam formed from rubberized concrete material

  • Salhi Mohamed;Safer Omar;Dahmane Mouloud;Hassene Daouadji Nouria;Alex Li;Benyahia Amar;Boubekeur Toufik;Badache Abdelhak
    • Earthquakes and Structures
    • /
    • v.27 no.2
    • /
    • pp.127-142
    • /
    • 2024
  • The amount of wave propagation through a rubber concrete construction is the subject of the current investigation. Rubber tire waste was used to make two different types of cement mixtures. One type contains sand substitute in amounts ranging from 15% to 60% of the total volume, while the other has gravel with diameters of 3/8 and 8/15 and 15% sand in the same mixture. A wide variety of concrete forms and compositions were created, and their viscous and solid state characteristics were assessed, along with their short-, medium-, and long-term strengths. Diffusion, density, mechanical strength resistance to compressive force, and ultrasound wave propagation were also assessed. The water-to-cement ratio and plasticizer were used in this investigation. In the second part of the study, an analytical model is presented that simulates the experimental model in predicting the speed of waves and the frequencies accompanying them for this type of mixture. Higher order shear deformation beam theory for wave propagation in the rubberized concrete beam is developed, considering the bidirectional distribution, which is primarily expressed by the density, the Poisson coefficient, and Young's modulus. Hamilton's concept is used to determine the governing equations of the wave propagation in the rubberized concrete beam structure. When the analytical and experimental results for rubber concrete beams were compared, the outcomes were very comparable. The addition of rubber gravel and sandy rubber to the mixture both resulted in a discernible drop in velocities and frequencies, according to the data.

Computer based FEM stabilization of oxygen transport model for material and energy simulation in corroding reinforced concrete

  • Hussain, Raja Rizwan
    • Computers and Concrete
    • /
    • v.12 no.5
    • /
    • pp.669-680
    • /
    • 2013
  • This paper unveils a new computer based stabilization methodology for automated modeling analysis and its experimental verification for corrosion in reinforced concrete structures under the effect of varying oxygen concentration. Various corrosion cells with different concrete compositions under four different environmental conditions (air dry, submerged, 95% R.H and alternate wetting-drying) have been investigated under controlled laboratory conditions. The results of these laboratory tests were utilized with an automated computer-aided simulation model. This model based on mass and energy stabilization through the porous media for the corrosion process was coupled with modified stabilization methodology. By this coupling, it was possible to predict, maintain and transfer the influence of oxygen concentration on the corrosion rate of the reinforcement in concrete under various defined conditions satisfactorily. The variation in oxygen concentration available for corrosion reaction has been taken into account simulating the actual field conditions such as by varying concrete cover depth, relative humidity, water-cement ratio etc. The modeling task has been incorporated by the use of a computer based durability model as a finite element computational approach for stabilizing the effect of oxygen on corrosion of reinforced concrete structures.

In vitro biocompatibility of a cement compositecontaining poly ($\varepsilon$-caprolactonemicrosphere) (PCL)

  • Jyoti, Md. Anirban;Min, Young-Ki;Lee, Byong-Taek;Song, Ho-Yeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.42.1-42.1
    • /
    • 2009
  • In recent years, it has been tried to develop the efficacy and bioactivity of Calcium Phosphate cements(CPC) as injectable bone substitute (IBS) by reinforcing them through varying the amount in its compositions and relative concentrations or adding other additives. In this study, the biocompatibility of are inforced Calcium Phosphate-Calcium Sulfate injectable bone substitute (IBS)containing poly ($\varepsilon$-caprolactone)PCL microspheres was evaluated which consisted of solution chitosan and Na-citrate as liquid phase and tetra calcium phosphate (TTCP), dicalciumphosphate anhydrous (DCPA) powder as the solid phase. The in vitrobiocompatibility of the IBS was done using MTT assay and Cellular adhesion and spreading studies. The in vitro experiments with simulated body fluid (SBF) confirmed the formation of apatite on sample surface after 7 and 14 days of incubation in SBF. SEM images for one cell morphologies showed that the cellular attachment was good. MG-63 cells were found to maintain their phenotype on samples and SEM micrograph confirmed that cellular attachment was well. In vitro cytotoxicity tests by an extract dilution method showed that the IBS was cytocompatible for fibroblast L-929.

  • PDF

Thermal Property of Geopolymer Ceramics Based on Fly Ash-Blast Furnace Slag (플라이애시-고로슬래그 기반 지오폴리머 세라믹스의 열적특성)

  • Kim, Jin-Ho;Nam, In-Tak;Park, Hyun;Kim, Kyung-Nam
    • Korean Journal of Materials Research
    • /
    • v.26 no.10
    • /
    • pp.521-527
    • /
    • 2016
  • Geopolymers have many advantages over Portland cement, including energy efficiency, reduced greenhouse gas emissions, high strength at early age and improved thermal resistance. Alkali activated geopolymers made from waste materials such as fly ash or blast furnace slag are particularly advantageous because of their environmental sustainability and low cost. However, their durability and functionality remain subjects for further study. Geopolymer materials can be used in various applications such as fire and heat resistant fiber composites, sealants, concretes, ceramics, etc., depending on the chemical composition of the source materials and the activators. In this study, we investigated the thermal properties and microstructure of fly ash and blast furnace slag based geopolymers in order to develop eco-friendly construction materials with excellent energy efficiency, sound insulation properties and good heat resistance. With different curing times, specimens of various compositions were investigated in terms of compressive strength, X-ray diffraction, thermal property and microstructure. In addition, we investigated changes in X-ray diffraction and microstructure for geopolymers exposed to $1,000^{\circ}C$ heat.

Properties of Heavyweight Concrete for Radiation Shielding (방사선 차폐용 중량콘크리트의 기초 특성)

  • Yang, Seung-Kyu;Um, Tai-Sun;Lee, Jong-Ryul;Kim, Yong-Ho;Wu, Sang-Ik;Kim, Tae-Bong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.561-564
    • /
    • 2008
  • Concrete is considered to be one of the excellent and versatile shielding material and is widely used for the radiation shielding material. Specially, heavyweight(or high density) concrete is used in counter weights of bascule and lift bridges, but it is generally used in radiation shielding structures and differ from normal weight concrete by having a higher density and special compositions to improve its attenuation properties. Thorough examination and evaluation of heavyweight aggregate sources are necessary to obtain material suitable for the type of shielding required. Therefore, this paper aims to study mechanical properties of heavyweight concrete by using normal cement, natural and heavyweight aggregate.

  • PDF