• Title/Summary/Keyword: Cement based composites

Search Result 120, Processing Time 0.022 seconds

Characterization of nano-structure pyrolytic char for smart and sustainable nanomaterials

  • N. K. Karthikeyan;S. Elavenil
    • Advances in nano research
    • /
    • v.16 no.1
    • /
    • pp.53-69
    • /
    • 2024
  • Advancements in the technology of building materials has led to diverse applications of nanomaterials with the aim to monitor concrete structures. While there are myriad instances of the use of nanoparticles in building materials, the production of smart nano cement-composites is often expensive. Thereupon, this research aims to discover a sustainable nanomaterial from tyre waste using the pyrolysis process as part of the green manufacturing circle. Here, Nano Structure Tyre-Char (NSTC) is introduced as a zero-dimension carbon-based nanoparticle. The NSTC particles were characterized using various standard characterization techniques. Several salient results for the NSTC particles were obtained using microscopic and spectroscopic techniques. The size of the particles as well as that of the agglomerates were reduced significantly using the milling process and the results were validated through a scanning electron microscope. The crystallite size and crystallinity were found to be ~35nm and 10.42%, respectively. The direct bandgap value of 5.93eV and good optical conductivity at 786 nm were obtained from the ultra violet visible spectroscopy measurements. The thermal analysis reveals the presence of a substantial amount of carbon, the rate of maximum weight loss, and the two stages of phase transformation. The FT-Raman confirms the presence of carboxyl groups and a ID/IG ratio of 0.83. Water contact angle around 140° on the surface implies the highly hydrophobic nature of the material and its low surface energy. This characteristic process assists to obtain a sustainable nanomaterial from waste tyres, contributing to the development of a smart building material.

Effect of surface treatment on mechanical and micro-structural properties of basalt fiber reinforced mortars

  • Sukru Ozkan
    • Computers and Concrete
    • /
    • v.34 no.2
    • /
    • pp.195-212
    • /
    • 2024
  • The use of basalt fibers in various types of fiber-reinforced mortars has been increasing. One of the factors that expands the use of basalt fibers is that it is a natural fiber and therefore the production costs are lower than fibers such as PVA fiber. Basalt fibers have some drawbacks such as reducing the workability of mortars in which basalt fibers are added due to their structure, and negatively affecting the mechanical properties when used above a certain proportional amount depending on the type of mixture. For this purpose, in this study, as a different application, the surface of basalt fibers with different lengths (6 and 12 mm) was treated with Triton X-100 surfactant, and these disadvantages were tried to be reduced. In the study, a two-step method was followed. In the first one, the effectiveness of adding untreated and treated basalt fiber at 1, 1.25, 1.5, 1.75 and 2% by weight to the mortar mixtures was determined by conducting flow spread and flow rate as fresh mortar characteristics. In the second one, microstructural characterization and mechanical tests were performed as hardened mortar properties. The results showed that the flow characteristics of basalt fiber reinforced mortars treated with surfactant improved compared to untreated basalt fiber reinforced mortars. In terms of mechanical properties, the addition of 2% treated basalt fiber by weight to the mixtures allowed to obtain %18, %12, and%48 higher values of compressive, flexural, and tensile strength values, respectively, compared to the same amount of untreated basalt fiber mixtures.

Rheology Control of Cement Paste for Applying ECC Produced with Slag Particles to Self-Consolidating and Shotcreting Process (고로슬래그 미분말이 혼입된 자기충전 및 숏크리트용 ECC의 개발을 위한 시멘트풀 레올로지 제어)

  • Park, Seung-Bum;Kim, Jeong-Su;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.67-75
    • /
    • 2008
  • An engineered cementitious composite produced with slag particles (Slag-ECC) had been developed based on micromechanical principle. Base grain ingredients were properly selected, and then the mixture proportion was optimized to be capable of achieving robust tensile ductility in the hardened state. The rheological design is performed in the present study by optimizing the amount of admixtures suitable for self-consolidating casting and shotcreting process in the fresh state. A special focus is placed on the rheological control which is directly applicable to the construction in field, using prepackaged product with all pulverized ingredients. To control the rheological properties of the composite, which possesses different fluid properties to facilitate two types of processing (i.e., self-consolidating and shotcreting processing), the viscosity change of the cement paste suspensions over time was initially investigated, and then the proper dosage of the admixtures in the cement paste was selected. The two types of mixture proportion were then optimized by self-consolidating & shotcreting tests. A series of self-consolidating and shotcreting tests demonstrated excellent self-consolidation property and sprayability of the Slag-ECC. The rheological properties altered through this approach were revealed to be effective in obtaining Slag-ECC hardened properties, represented by pseudo strain-hardening behavior in uniaxial tension, allowing the readily achievement of the desired function of the fresh Slag-ECC. These ductile composites with self-consolidating and shotcreting processing can be broadly utilized for a variety of applications, e.g., in strengthening seismic resistant structures with congested reinforcements, or in repairing deteriorated infrastructures by shotcreting process.

Enhanced Technique for Fiber Detection of ECC Sectional Image (ECC 화상 단면의 향상된 섬유 검출 기법)

  • Lee, Bang-Yeon;Kim, Yun-Yong;Kim, Jeong-Su;Lee, Yun;Kim, Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1009-1012
    • /
    • 2008
  • The fiber dispersion performance in fiber-reinforced cementitious composites is a crucial factor with respect to achieving desired mechanical performance. However, evaluation of the fiber dispersion performance in the composite PVA-ECC(Polyvinyl alcohol-Engineered Cementitious Composite) is extremely challenging because of the low contrast of PVA fibers with the cement-based matrix. In the present work, an enhanced fiber detection technique is developed and demonstrated. Using a fluorescence technique on the PVA-ECC, PVA fibers are observed as green dots in the cross-section of the composite. After capturing the fluorescence image with a Charged Couple Device(CCD) camera through a microscope. The fibers are more accurately detected by employing a series of process based on a categorization, watershed segmentation, and morphological reconstruction.

  • PDF

Cyclic Responses of Steel Reinforced ECC Column under Reversed Cyclic Loading Conditions (철근 보강된 ECC 기둥의 반복하중에 대한 이력거동)

  • Hyun, Jung-Hwan;Shim, Young-Heung;Bang, Jin-Wook;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.75-82
    • /
    • 2015
  • In this study, experimental research was carried out to evaluate steel reinforced ECC (Engineered Cementitious Composites) column, which exhibits excellent crack control property and highly ductile behavior. Ordinary portland cement and high volume fly ash were used as binding materials in the mixture proportions for the purpose of achieving a high level of multiple cracking property with the tightly controlled crack width. To compare with the cyclic behavior of steel reinforced ECC column specimen, a conventional reinforced concrete column was prepared and tested under reversed cyclic loading condition. Based on the cyclic load test, ECC column exhibited higher cyclic behavior, compared to the conventional RC column, in terms of load carrying capacity and energy dissipation capacity.

Development of a Lightweight Construction Material Using Hollow Glass Microspheres (중공 유리 마이크로스피어를 활용한 경량 소재 개발)

  • Lee, Nankyoung;Moon, Juhyuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.449-455
    • /
    • 2022
  • Concrete is the most widely used construction material. The heavy self-weight of concrete may offer an advantage when developing high compressive strength and good dimensional stability. However, it is limited in the construction of super-long bridges or very high skyscrapers owing to the substantially increased self-weight of the structure. For developing lightweight concrete, various lightweight aggregates have typically been utilized. However, due to the porous characteristics of lightweight aggregates, the strength at the composite level is generally decreased. To overcome this intrinsic limitation, this study aims to develop a construction material that satisfies both lightweight and high strength requirements. The developed cementitious composite was manufactured based on a high volume usage of hollow glass microspheres in a matrix with a low water-to-cement ratio. Regardless of the tested hollow glass microspheres from among four different types, compressive strength outcomes of more than 60 MPa and 80 MPa with a density of 1.7 g/cm3 were experimentally confirmed under ambient and high-temperature curing, respectively.

The Effects of Void Ratio on Extrudability and Buildability of Cement-based Composites Produced by 3D Printers (3D 프린터용 시멘트 복합체의 간극비가 출력성과 적층성에 미치는 영향)

  • Seo, Ji-Seok;Lee, Bong-Chun;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.104-112
    • /
    • 2019
  • The material properties of the 3D printing cement composite mortar were evaluated, and the performance range in which printing was possible was calculated using the void ratio in a fresh state as a single index. As a results of the tests, as the water-binder ratio (W/B) increased, the mortar flow value increased and the density and strength decreased. As the sand-binder ratio (SS/B) increased, the mortar flow value decreased. However, strength and density increased and decreased up to a certain SS/B. As admixture-binder ratio (Ad/B) increased, mortar flow value, density, and strength decreased. These trends make it difficult to mix-design to meet the target performances of 3D printing mortars, represented by extrudability and buildability. The value of mortar flow increased proportionally with the void ratio, while the density and strength apparently decreased as the void ratio increased. This indicates that void ratio can be utilized as a single index for controlling the material properties in the design of mortar mixtures. It was found that mortar mixture could be printed by a 3D printer when the void ratio was in the range from 0.6 to 0.7. This was verified by printing a mortar which has the void ratio of 0.634. The mortar was produced with the mixture design of W/B 35.0%, SS/B 60.0%, and Ad/B 0.1%. Further research applying diverse admixtures is needed to improve the quality of 3D printing output mortars.

Fiber Classification and Detection Technique Proposed for Applying on the PVA-ECC Sectional Image (PVA-ECC단면 이미지의 섬유 분류 및 검출 기법)

  • Kim, Yun-Yong;Lee, Bang-Yeon;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.513-522
    • /
    • 2008
  • The fiber dispersion performance in fiber-reinforced cementitious composites is a crucial factor with respect to achieving desired mechanical performance. However, evaluation of the fiber dispersion performance in the composite PVA-ECC (Polyvinyl alcohol-Engineered Cementitious Composite) is extremely challenging because of the low contrast of PVA fibers with the cement-based matrix. In the present work, an enhanced fiber detection technique is developed and demonstrated. Using a fluorescence technique on the PVA-ECC, PVA fibers are observed as green dots in the cross-section of the composite. After capturing the fluorescence image with a Charged Couple Device (CCD) camera through a microscope. The fibers are more accurately detected by employing a series of process based on a categorization, watershed segmentation, and morphological reconstruction.

Suggestion of Ocher Color Standards for Cement-Composites used on the Sidewalk (보도에 사용되는 시멘트복합체에 대한 황토색 표준의 제시)

  • Chung, Chul-Woo;Lee, Jae-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • This work aims to suggest the most proper Hwangtoh color(ocher) for sidewalks and walkways located at the central part of the city. The actual colors of Hwangtoh samples that were obtained from 3 different locations (mountain walkways) in Busan were measured. In addition, personal preferences of such Hwangtoh colors were evaluated through survey in order to provide a proper standard reference color for urban walkways and sidewalks. With respect to the chromaticity of Hwangtoh obtained in Busan, $a^*$ and $b^*$ values were found to range from 3.6 to 13.6 and 11.4 to 23.4, respectively. It was also found that $L^*$ (lightness) values of 3 different Hwangtoh samples were found to be similar. According to the results from survey, higher values of $+a^*$ (red type) and $+b^*$ (yellow type) were preferred, indicating the red and yellow color needs to be developed stronger from Hwangtoh. Based on these findings, the proper Hwangtoh color used for walkways in urban area was chosen. It was found to be $L^*$ for 32.2~45.8, $a^*$ for 5.2~13.6, and $b^*$ for 15.8~21.2, respectively.

Compressive Strength and Chloride Ion Penetration Resistance of SHCC Coated by PDMS-based Penetrating Water Repellency (PDMS 흡수방지재를 적용한 SHCC의 압축강도 및 염화물이온 침투저항성)

  • Lee, Jun-Hee;Hyun, Jung-Hwan;Park, Su-Hyun;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.16-23
    • /
    • 2018
  • In this study, Polydimethylsiloxane (PDMS) was applied to Strain Hardening Cement Composites (SHCC) for penetrating water repellency. The penetration depth of PDMS, strength of SHCC, and chloride ion penetration resistance of SHCC were investigated. As a result of measuring penetration depth of PDMS when applying different application method, it was confirmed that all methods satisfied the requirements of KS F 4930. Although the immersion method showed the largest penetration depth, the spray method was considered to be more appropriate considering the ease of field application. Compressive strength tests showed that the penetration depth of PDMS decreased as the compressive strength of SHCC increased. The compressive strength of M4-A and M4-B specimens with large PDMS penetration depths decreased by 9.6% and 8.0%, respectively, compared with those of M4 specimens produced without PDMS. Compressive strengths of the M1-A and M1-B specimens with small PDMS penetration depths were reduced by 4% and 2.2%, respectively, compared with the M1 specimen. As a result, it can be seen that the strength reduction rate of SHCC increases as the penetration depth of PDMS increases. The chlorine ion penetration tests showed that the chlorine ion penetration resistance increases with the penetration depth of PDMS.