• Title/Summary/Keyword: Celluose fiber

Search Result 4, Processing Time 0.022 seconds

Development of Antimicrobial and Deodorizing Cellulose Fiber (항균방취 셀룰로오스섬유 제조에 관한 연구)

  • 홍영근
    • Textile Coloration and Finishing
    • /
    • v.10 no.1
    • /
    • pp.38-42
    • /
    • 1998
  • Both cellulose and chitin together were dissolved in DMAc/LiCl and these solutions were extruded into coagulant of $DMAc/H_2O$. Fibers thus obtained were treated in NaOH aqueous solution. Results showed that the fiber surface contains celluose and chitosan. This means that these fibers treated are composed of three components, ie, cellulose, chitin, and chitosan. These fiber showed secure antibacterial and mechanical properties.

  • PDF

Strength Properties of Cement Mortar with Slurry-Typed Cellulous Fiber (슬러리형 셀룰로오즈 파이버를 혼입한 시멘트 모르타르의 강도 특성)

  • Ryu, Hwa-Sung;Shin, Sang-Heon;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.210-215
    • /
    • 2019
  • Concrete members with wide surface area are vulnerable to cracking due to material behavior such as hydration heat and drying shrinkage. Recently many researches have been performed on improvement of strength and cracking resistance through fiber reinforcement, which are mainly focused on enhancement of tensile strength against cracking due to material behavior. In this paper, CFs(Cellulous Fibers) are manufactured for slurry type, and the engineering properties in cement mortar incorporated with CFs are evaluated for flow-ability, compressive, and flexural strength. Through SEM analysis, a pull-off characteristics of CF in matrix are analyzed. With CF addition of $0.5kg/m^3{\sim}1.0kg/m^3$, flexural strength is much improved and enough toughness of pull-off is also observed unlike plastic fiber containing smooth surface.

Dyeing on cellulose fibers by the solution extracted from natural fresh leaves of indigo plant. (천연 생 쪽잎 추출액을 이용한 셀룰로오스계 섬유의 염색)

  • Ju Jeong ah;Ryu Hyo seon
    • Textile Coloration and Finishing
    • /
    • v.16 no.5
    • /
    • pp.19-27
    • /
    • 2004
  • The dyeing on cellulose fibers such as cotton and viscose viscose rayon was carried out by the use of solution extracted from natural fresh leaves of indigo plant under several dyeing conditions. The dyeing affinity of viscose rayon was higher than that of cotton. The total K/S value of dyed fabrics was considerably increased with repeated dyeings, while a dyeing time has a little influence on it. Both fibers were hardly dyed by indigo at $60^{\circ)$ and cotton was dyed better at $40^{\circ)$ than at $20^{\circ)$, but in viscose rayon, a little difference of total K/S was shown between $20^{\circ)$ and $40^{\circ)$. The color change of dyed fabric according to dyeing conditions was evaluated by the CIELAB color system. viscose rayon had a lower $b^*$ so that it looked bluer than cotton and when the celluose fibers were dyed by indigo plant at the lower temperature, the bluer it looked. By repeated dyeings the $b^*$value of dyed fabrics was much increased but the $a^*$ value was little influenced and in case of viscose rayon the change was considerable.

Determination of Dietary Fiber Content in Some Fruits and Vegetables (과일.채소중 식이섬유의 분석법 검토 및 함량 분석)

  • Lee, Kyung-Sook;Lee, Su-Rae
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.317-323
    • /
    • 1987
  • This study was undertaken to examine the applicability of domestic enzymes in the quantitative determination of dietary fibers according to the official enzymatic-gravimetric method of AOAC and to apply it to 4 kinds of fruits (apple, pear, peach and persimmon) and 4 kinds of vegetables (Korean radish, lettuce, Korean cabbage and cabbage Kimchi). With domestic enzymes, an optimum condition was selected to use 1/10 units of enzyme activity and to extent the reaction time two-fold as compared with the recommended method, in the case of fruits and vegetables. On a dry matter basis, fiber contents of fruits were in the range of 9.4-28.8% total dietary fiber, 1.8-7.8% non-cellulosic polysaccharides, 3.7-5.8% cellulose and 1.3-21.3% lignin. Fiber contents of vegetables were 26.0-35.7% total dietary fiber, 11.3-14.4% non-cellulosic polysac-charides, 12.3-19.7% cellulose and 1.4-7.4% lignin. On a dry matter basis, crude fiber contents were 3.5-6.7%in fruits and 9.1-13.8% in vegetables. Therefore, crude fiber contents of fruits and vegetables accounted for only 12-50% of total dietary fibers.

  • PDF