• Title/Summary/Keyword: Cellulomonas

Search Result 65, Processing Time 0.023 seconds

Studies on Microbial Utilization of Agricultural Wastes (Part 4) Effect of Acid in Neutralization after Alkali Treatment of the Wastes on Cellulosic Single Cell Protein Production (농산폐자원의 미생물학적 이용에 관한 연구 (제사보) 기질처리시의 알칼이ㆍ산중화 조건에 대하여)

  • Lee, Gye-Jun;Ko, Young-Hee;Bae, Moo
    • Microbiology and Biotechnology Letters
    • /
    • v.4 no.3
    • /
    • pp.99-104
    • /
    • 1976
  • Experiments were carried out to establish the effects of acids in neutralization after alkaline treatment of rice straw, with which cellulosic single cell protein can be produced by cellulose utilizing bacteria, Cellulomonas flavigena KIST 321, previously isolated by authors. Following results were obtained. 1. Rice straw as carbon source was pretreated with 10 volumes of 1 normality of NH$_4$OH or NaOH(NaOH/substrate:40%, and then washed with water or neutralized with H$_3$PO$_4$, H$_2$SO$_4$, HCl and CH$_3$COOH. Among the above mentioned methods, neutralization with H$_3$PO$_4$after alkaline treatment was proved to be the most effective on its digestibility and SCP production. Dry cell 12.28g/$\ell$ and 78% digestibility were obtained. 2. When rice straw was treated with NaOH solution, the result suggested that the productibity of cell-mass was attained on treatment of rice straw with 6% of NaOH (NaOH/substrate ratio) for 15~24hrs at room temperature. 3. When rice straw was treated with NaOH, a volume of water to substrate is adequate by two or three fold and the amount of NaOH can be economized up to 5% for the weight of rice straw. 4. The steaming of rice straw at 121$^{\circ}C$ for 30min. in alkaline treatment of rice straw gave the similiar effectiveness to that at room temperature for 15~24hrs. and accelerated the sterilization of the substrate. 5. Finally, the level of inorganic phosphate in a medium was investigated. 11.2g of dry cell was produced at the concentration of 0.2%, phosphate (phosphorous level 0.04%) in medium even though treated rice straw was neutralized with HCI instead of H$_3$PO$_4$, and 12.2g/$\ell$ at the concentration of 0.3% phosphate (phosphorous 0.04%) on neutralization with H$_2$SO$_4$.

  • PDF

Enhancement of Excretory Production of an Exoglucanase from Escherichia coli with Phage Shock Protein A (PspA) Overexpression

  • Wang, Y.Y.;Fu, Z.B.;Ng, K.L.;Lam, C.C.;Chan, A.K.N.;Sze, K.F.;Wong, W.K.R.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.6
    • /
    • pp.637-645
    • /
    • 2011
  • Production of recombinant proteins by excretory expression has many advantages over intracellular expression in Escherichia coli. Hyperexpression of a secretory exoglucanase, Exg, of Cellulomonas fimi was previously shown to saturate the SecYEG pathway and result in dramatic cell death of E. coli. In this study, we demonstrated that overexpression of the PspA in the JM101(pM1VegGcexL-pspA) strain enhanced excretion of Exg to 1.65 U/ml using shake-flask cultivation, which was 80% higher than the highest yield previously obtained from the optimized JM101(pM1VegGcexL) strain. A much higher excreted Exg activity of 4.5 U/ml was further achieved with high cell density cultivation using rich media. Furthermore, we showed that the PspA overexpression strain enjoyed an elevated critical value (CV), which was defined as the largest quotient between the intracellular unprocessed precursor and its secreted mature counterpart that was still tolerable by the host cells prior to the onset of cell death, improving from the previously determined CV of 20/80 to the currently achieved CV of 45/55 for Exg. The results suggested that the PspA overexpression strain might tolerate a higher level of precursor Exg making use of the SecYEG pathway for secretion. The reduced lethal effect might be attributable to the overexpressed PspA, which was postulated to be able to reduce membrane depolarization and damage. Our findings introduce a novel strategy of the combined application of metabolic engineering and construct optimization to the attainment of the best possible E. coli producers for secretory/excretory production of recombinant proteins, using Exg as the model protein.

Studies on the promoted Aging of flue-cured leaf tobacco by cellulolytic Enzyme and Nicotinophiles (섬유소 분해효소 및 니코틴 분해세균을 이용한 잎담배의 발효촉진효과)

  • 이태호;성낙계
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.13 no.2
    • /
    • pp.5-20
    • /
    • 1991
  • For the quality enhancement of harvested-year leaf tobacco to the quality of 2-year naturally aged leaf tobacco, cellulose and nicotine degradative bacteria were isolated and identified. Effects of artificial fermentation treated cellulase and nicotine degradative bacteria on the quality of leaf tobacco were investigated from the chemical and sensory points of view. 1, Changes in chemical composition of leaf tobacco resulted from the addition of cellulase extracted from Cellulomonas sp. [3ml(${\mu}{\textrm}{m}$ D-glucose/ml. mil-1) of enzymes solution 11009 of leaf tobacco] and nicotine degradative bacteria, Pseudomonas sp. 2ml(IX109 cells$\div$ 100g of leaf tobacco), and subsequently fermented at 40${\mu}{\textrm}{m}$$^{\circ}C$, 65% R. H. for 40 days are as follows : 1) Content of crude fiber decreased 12% It took 9 min, 53 sec. to reach full combustion in control group but took only 7 min. 47 sec. in the treated group, taking almost equal time to 2-year naturally aged leaf tobacco(7 min. 35sec.). 2) Light intensity of control group was 60.96% with bright lemon color but that of treated leaf tobacco accounted for 47.69 with orange to dark brown color series, which was almost equal to the value, 45.69, of 2-year naturally aged leaf tobacco. 3) Linoleic acid, serving mild taste among organic acids, amounted to 1.llmg/g in control group but increased to 1.35m9/9 in the treated leaf tobacco, identical to the content(1.35mg/g) of 2-year naturally aged leaf tobacco. 4) Content of solanone, on of the typical leaf tobacco flavor compounds, accounted for 2.95% in control group but increased to 2.87% in treated group. 5) Methyl furan, useful flavor compound in smoke composition, accounted for 17.6$\mu\textrm{g}$/cig. in control group but increased to 25.9$\mu\textrm{g}$/cig. in treated group. However, acroleine decreased from 69.3$\mu\textrm{g}$/cig. in control group to 58.6$\mu\textrm{g}$/cig. in treated group 2. In sonsory test, mild taste evaluation of control group scored 5.47 and treated group 7.93 which was evaluted almost equal to the value(8.00) of 2-year naturally aged leaf tobacco. Aroma evaluation of control group scored 5.60, treated group 8.20, and 2-year naturally aged leaf tobacco 8.33. In addition, total harmony taste of control group showed 5.67, treated group 8.07 (p<0.01), and 2-year naturally aged leaf tobacco 8.00. From these results, it can be said that quality of treated leaf tobacco is not inferior to that 2-year naturally aged leaf tobacco.

  • PDF

Studies on the Microbial Utilization of Agricultural Wastes (Part 3) Effects of Alkali Treatments of the Wastes on the Production of Cellulosic Single-Cell Protein (농산폐자원의 미생물학적 이용이 관한 연구(제3보) -알카리 전처리가 -섬유소단세포단백 생산에 미치는 영향-)

  • Bae, Moo;Kim, Byung-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.2 no.2
    • /
    • pp.79-82
    • /
    • 1974
  • Present experiments were designed to estimate the effects of pretreatments by various kinds of alkalis to the agricultural wastes such as cereal straws as the substrate on the production of cellulosic single-cell protein. Among the various kinds of alkalis NaOH was proved to be the most effective on improving the digestibility of cellulose by the bacteria isolated. NH$_4$OH which is inferior to NaOH in the effectiveness of treatment might have more economic advantage in the price, and the ammonium salt resulted from the neutralization can be used as the nitrogen source by bacteria. The treatment with higher concentration than 1 normality of NH$_4$OH didn't increase the productivility of cell mass. About five per cent of (NH$_4$)$_2$SO$_4$ in medium resulted from the neutralization didn't have any influence in the cell mass productivility. Futhermore, the cell mass productibility was higher in the case of neutralization than alkali free washing. The digestibility of straws was increased from 7.9% to 46.0% by NH$_4$OH treatment, and 6.3∼6.45g of dry cell were obtained from 40g of NH$_4$OH treated straws. In the case of NaOH treatment, 8.6g of cell mass was obtained from 40g of substrate.

  • PDF

Effect of Plant-Growth-Promoting-Bacterial Inoculation on the Growth and Yield of Red Pepper(Capsicum annuum L.) with Different Soil Electrical Conductivity Level (염류수준별 고추 생육과 수량에 미치는 식물생육보진미생물(植物生育保進微生物) 접종효과)

  • Lee, Young-Han;Yang, Min-Suk;Yun, Han-Dae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.4
    • /
    • pp.396-402
    • /
    • 1996
  • This study was conducted to determine the effect of treatment with the plant-growth-promoting bacteria on the growth and yield of red pepper(Capsicum annuum L.) with different soil electrical conductivity(EC) levels. The mixed liquid culture was done pseudomonas P and saboraud dextrose medium. The isolated bacteria(IB) were inoculated by spray of 3.7ml at 1/2000a pot filled with different soil electrical conductivity level(2.9, 8.6, 11.5dS/m) every week, respectively, with mixed liquid culture (Pseudomonas P+Sabouraud dextrose) of eight strains. The plant height of red pepper with IBs treatment in different soil EC levels showed better growth than IBs nontreatment in the order of the 2.9>8.6>11.5 dS/m. The yield of pepper with IBs treatment in different soil EC level was higher in 13% than IBs nontreatment and chemical properties($P_2O_5$, K, Ca, Mg) of the soil after harvest in IBs treatment were slightly increased, while organic matter and EC of IBs treatment were slightly decreased than those of IBs nontreatment. Moisture content of the soil after the harvesting with IBs treatment was slightly increased than IBs nontreatment.

  • PDF