• Title/Summary/Keyword: Cellulase Enzyme

Search Result 542, Processing Time 0.028 seconds

The Effect of Biopolishing with Cellulase Enzyme on Ramie and Hemp Fabrics (마직물의 셀룰라이제 효소처리에 의한 유연가공효과에 관한 연구)

  • Kim, Jung-Hee;Yu, Hye-Ja
    • Fashion & Textile Research Journal
    • /
    • v.3 no.4
    • /
    • pp.367-372
    • /
    • 2001
  • Five kinds of commercial ramie and hemp fabrics were treated with cellulase under different concentrations. Samples were mercerized before enzyme treatment to investigate the effect of mercerization on cellulase enzyme treatment. Physical characteristics(weight loss, tear strength retention, wrinkle recovery, drape stiffness, dyeability) of cellulase enzyme treated and untreated samples were measured and compared. X-ray diffractions were examined to verify if there were any changes in their crystallinity of enzyme treated fabrics. Weight loss, wrinkle recovery and degree of crystallinity increased as the concentration of cellulase enzyme increased. In the meanwhile, tear strength retention and drape stiffness and dyeability decreased. Enzyme activity was more effective on mercerized samples. Particularly, there was distinct tendency to increase weight loss and flexibility.

  • PDF

Cross-Synergistic Interactions between Trichoderma viride and Penicillium funiculosum Cellulase (Trichoderma viride와 Penicillium funiculosum Cellulase 성분효소 간의 상승작용에 관한 연구)

  • Hong, Jeong-Hwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.3
    • /
    • pp.340-348
    • /
    • 1993
  • Cross-synergistic interactions were evaluated with purified enzymes from Trichoderma viride and Penicillium funiculosum cellulase. Different synergistic patterns between enzyme components were observed. Exo-exo type synergism was found to be the most effective for degrading Avicel in all cases. Exo-endo type synergism was found to be slightly less effective. Extended hydrolysis of Avicel was carried out using mixtures of purified enzyme components with the crude cellulase from a different source. Addition of $\beta$-glucosidase from P. funiculosum cellulase to T. viride cellulase provided the great enhancement of Avicel hydrolysis. In addition, exoglucanase from T. viride cellulase was found to enhance P. funiculosum cellulase in degradation of Avicel. In conclusion, it was possible to enhance the hydrolysis of Avicel by altering the proportions of enzyme components by supplementing enzyme components from a different source. Different types of synergisms acted together to achieve maximum conversion.

  • PDF

Studies on the Enzymatic Hydrolysis of Lignocellulosic Materials for the Alternative Fuels(III) - Quantitative Recycling of Cellulase Enzyme in the Enzymatic Hydrolysis of Steam-Exploded Woods - (대체연료(代替燃料) 생산(生産)을 위한 목질재료(木質材料)의 가수분해(加水分解)에 관한 연구(硏究) (III) - 폭쇄(爆碎)처리재의 산소분해시(酸素分解時) Cellulase 산소(酸素)의 정량적(定量的) 회수(回收)에 관하여 -)

  • Cho, Nam-Seok;Lim, Chang-Suk;Lee, Jae-Sung;Park, Shin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.14-21
    • /
    • 1991
  • Steam-exploded woods were delignified by two-stage with a 0.3% NaOH extraction and oxygen-alkali bleaching and were subjected to the enzymatic hydrolysis with cellulase enzyme. Also, an improved almost quantitative recycle process of cellulase enzyme was discussed. In enzyme recovery by affinity method, The first recycling showed relatively high hydrolysis rate of 96.4%. Even at the third recycle, hydrolysis rate was 87.0 percents. In the case of cellulase recovery by ultrafiltration method, first 2 recycling treatments resulted in very high hydrolysis rates, 96.8% and 95.0%, respectively. Even the third recycling showed about 93.6%. Steam-explosion treatment of oak wood followed by 2-stage delignification with alkali and oxygen-alkali produced a excellant substrate for the enzymatic hydrolysis that allowed almost quantitative recycle of cellulase.

  • PDF

Mud-Scale Deinking Process for the Recycling of Office Waste Paper using Cellulase

  • Lee, Sang-Mok;Ryu, Geun-Gap;Gu, Yun-Mo
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.347-350
    • /
    • 2000
  • Enzymatic deinking of office-waste paper was studied using crude cellulase and papain-hydrolyzed cellulase from Trichoderma reesei Rut C-30 in small-scale and mid-scale. The results were compared with deinkings using commercial enzyme(Novozym 342) and conventional chemical methods. Maximum brightness and freeness were obtained at 3 units/g Oven Dry Paper(ODP) of CMCase activity using crude cellulase in mid-scale deinking experiments. The deinked pulp had higher physical strength and brightness, and lower freeness and yield than the pulp deinked in small scale. In small scale deinking, maximum brightness and freeness were obtained at 2 unit/g ODP. Deinking by papain-hydrolyzed cellulase showed similar results with one by Novozym 342. It was better in brightness and freeness, but showed lower physical strength and yield, than the conventional deinking by sodium hydroxide. The ratio of endo-1,4-glucanase and exo-1,4-glucanase components in papain hydrolyzed cellulase from T. reesei Rut C-30 was similar to that of commercial enzyme, Novozym 342, implicating a successful application as a deinking enzyme.

  • PDF

Properties of a Bacillus licheniformis Cellulase Produced by Recombinant Escherichia coli (대장균으로부터 생산된 Bacillus licheniformis WL-12의 Cellulase 특성)

  • Park, Jong-Duk;Kim, Yeon-A;Yoon, Ki-Hong
    • Korean Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.257-262
    • /
    • 2009
  • Carboxymethyl celluase (cellulase) was purified from cell-free extract of the recombinant Escherichia coli carrying a Bacillus licheniformis WL-12 cellulase gene by DEAE-Sepharose and phenyl-Sepharose column chromatography with specific activity of 163 U/mg protein. The molecular mass of the purified enzyme was estimated to be approximately 49.5 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme had a pH optimum at 5.5 and a temperature optimum at $55^{\circ}C$. The activity of the enzyme was completely inhibited by SDS (5 mM), and slightly enhanced by $Cu^{2+}$ (5 mM). The cellulase was active on CMC, konjac, barely glucan and lichenan, while it did not exhibit activity towards xylan, locust bean gum, and p-nitrophenyl-$\beta$-glucopyranoside. The predominant products resulting from the cellulase hydrolysis were cellobiose and cellotriose for cellooligosaccharides including cellotriose, cellotetraose and cellopentaose. The enzyme could hydrolyze cellooligosaccharides larger than cellobiose.

Autohydrolysis and Enzymatic Saccharification of Lignocellulosic Materials(III) - Recycling and Reutilization of Cellulase Enzyme - (목질 재료의 자기가수분해 및 효소당화에 관한 연구 (Ⅲ) - Cellulase 효소의 회수 및 재사용 -)

  • Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.45-51
    • /
    • 1989
  • A major problem in the enzymatic hydrolysis of lignocellulosic substrates is the very strong bonding of cellulase to lignin and even cellulose in the hydrolysis residues. This phenomenon inhibits recycle of the cellulase which is a major expense of the enzymatic hydrolysis process. In this paper, autohydrolyzed wood was delignified by two-stage with a 0.3% Na OH extraction and oxygen-alkali bleaching and was subjected to enzymatic hydrolysis with cellulase. Also, an improved almost quantitative recycle process of cellulase enzyme was discussed. In enzyme recovery by affinity method. the first recycling showed relatively high hydrolysis rate of 97.4%. Even at the third recycle. hydrolysis rate was 86.7 percents. In the case of cellulase recovery by ultrafiltration method, first 2 recycling treatments resulted very high hydrolysis rate(97.0-97.7%). Even the third recycling showed about 94.2%. Authoydrolysis of oak wood followed by 2-stage delignification with alkali and oxygen-alkali produced a substrate for enzymatic hydrolysis that allowed almost quantitative recycle of cellulase.

  • PDF

Chitinolytic and Chitosanolytic Activities from Crude Cellulase Extract Produced by A. niger Grown on Apple Pomace Through Koji Fermentation

  • Dhillon, Gurpreet Singh;Brar, Satinder Kaur;Kaur, Surinder;Valero, Jose R.;Verma, Mausam
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.12
    • /
    • pp.1312-1321
    • /
    • 2011
  • Enzyme extracts of cellulase [filter paper cellulase (FPase) and carboxymethyl cellulase (CMCase)], chitinase, and chitosanase produced by Aspergillus niger NRRL-567 were evaluated. The interactive effects of initial moisture and different inducers for FP cellulase and CMCase production were optimized using response surface methodology. Higher enzyme activities [FPase $79.24{\pm}4.22$ IU/gram fermented substrate (gfs) and CMCase $124.04{\pm}7.78$ IU/gfs] were achieved after 48 h fermentation in solid-state medium containing apple pomace supplemented with rice husk [1% (w/w)] under optimized conditions [pH 4.5, moisture 55% (v/w), and inducers veratryl alcohol (2 mM/kg), copper sulfate (1.5 mM/kg), and lactose 2% (w/w)] (p<0.05). Koji fermentation in trays was carried out and higher enzyme activities (FPase $96.67{\pm}4.18$ IU/gfs and CMCase $146.50{\pm}11.92$ IU/gfs) were achieved. The nonspecific chitinase and chitosanase activities of cellulase enzyme extract were analyzed using chitin and chitosan substrates with different physicochemical characteristics, such as degree of deacetylation, molecular weight, and viscosity. Higher chitinase and chitosanase activities of $70.28{\pm}3.34$ IU/gfs and $60.18{\pm}3.82$ to $64.20{\pm}4.12$ IU/gfs, respectively, were achieved. Moreover, the enzyme was stable and retained 92-94% activity even after one month. Cellulase enzyme extract obtained from A. niger with chitinolytic and chitosanolytic activities could be potentially used for making low-molecular-weight chitin and chitosan oligomers, having promising applications in biomedicine, pharmaceuticals, food, and agricultural industries, and in biocontrol formulations.

Purification and Characterization of a Thermophilic Cellulase from a Novel Cellulolytic Strain, Paenibacillus barcinonensis

  • Asha, Balachandrababu Malini;Revathi, Masilamani;Yadav, Amit;Sakthivel, Natarajan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1501-1509
    • /
    • 2012
  • A novel bacterial strain, MG7, with high cellulase activity was isolated and identified by morphological characteristics and molecular phylogeny analysis as Paenibacillus barcinonensis. Maximum production of cellulase by MG7 was observed at pH 7.0 and $35^{\circ}C$. The enzyme was purified with a specific activity of 16.88 U/mg, the cellulase activity was observed in a zymogram, and its molecular mass (58.6 kDa) was confirmed by SDS-PAGE. The purified enzyme showed maximum activity at pH 6.0 and $65^{\circ}C$ and degraded cellulosic substrates such as carboxy methyl cellulose (CMC), Avicel, filter paper, and ${\beta}$-glucan. The enzyme showed stability with 0.5% concentration of various surfactants. The $K_m$ and $V_{max}$ of cellulase for CMC and Avicel were found to be 0.459mg/ml and 10.46mg/ml/h, and 1.01 mg/ml and 10.0 mg/ml/h, respectively. The high catalytic activity and its stability to temperature, pH, surfactants, and metal ions indicated that the cellulase enzyme by MG7 is a good candidate for biotechnological applications.

Studies on the Cellulase. (V) -Fractionation of Cellulolytic Complex produced by Trichoderma $viride(O_2-1)$ (섬유소(纖維素) 분해효소(分解酵素)에 관(關)한 연구(硏究) (제5보(第5報)) -Trichoderma $(O_2-1)$가 생성(生成)하는 Cellulolytic Complex의 분별(分別)에 대(對)하여-)

  • Sung, Nack-Kie
    • Applied Biological Chemistry
    • /
    • v.12
    • /
    • pp.99-105
    • /
    • 1969
  • The yield of cellulase derived from Trichoderma $(O_2-1)$ was remarkably varied with various concentration of ethanol and acetone in purification of the enzyme. In the purification with ethanol of ${\beta}-glucosidase$, the best result was obtained in the concentration of 60% and, of CMCase and of filter paper disintegrating enzyme 80%. And in the purification with acetone of ${\beta}-glucosidase$, filter paper disintegrating enzyme, and CMCase, in the concentration of 60%, 80%, and 90% respectively, was shown the best yield. The activities of crude Cellulase preparation could be seperated into few of fractions by column chromatography with Silica gel, Cellulose powder, and gauze. Most of CMCase, avicelase, and ${\beta}-glucosidase$ were eluted, but most of filter paper disintegrating enzyme and the rest of enzymes mentioned the above were absorbed, and were eluted with water. Therefore, it was considered that CMCase is different from filter paper disintegrating enzyme in properties. The relative activity of CMCase was different from that of avicelase in the peak of elusion part. And it was considered that filter paper disintegrating enzyme and cellulose powder saccharifying enzyme was seperated respectively as absorption part and non absorption part. The auther came to the conclusion that at least there were more than three sorts of cellulase in Trichoderma $(O_2-1)$ cellulase preparation.

  • PDF

Characterization of alkaline cellulase from Bacillus subtilis 4-1 isolated from Korean traditional soybean paste (전통 장류에서 분리된 알칼리성 Cellulase 생성 Bacillus subtilis 4-1 균주의 효소학적 특성)

  • Baek, Seong Yeol;Lee, You Jung;Yun, Hye Ju;Park, Hye Young;Yeo, Soo-Hwan
    • Food Science and Preservation
    • /
    • v.21 no.3
    • /
    • pp.442-450
    • /
    • 2014
  • In this study, we isolated a cellulase-producing bacterium isolated from traditional Korean fermented soybean paste and investigated the effect of culture conditions on the production of cellulase. This bacterium, which was identified as Bacillus subtilis 4-1 through 16S rRNA gene sequence analysis, showed the highest cellulase activity when the cells were grown at $45^{\circ}C$ for 24 hours in the CMC medium supplemented with 1.0% of soluble starch and 0.1% yeast extract. The initial optimum pH of the medium was observed in the range of 5.0~9.0. The optimal pH and temperature for the production of cellulase from B. subtilis 4-1 were pH 9.0 and $60^{\circ}C$ respectively. In addition, the enzyme showed significant activity in the temperature range of $20{\sim}90^{\circ}C$, which indicates that B. subtilis 4-1 cellulase is an alkaline-resistance and thermo-stable enzyme. This enzyme showed higher activity with CMC as the substrate for endo-type cellulase than avicel or pNPG as the exo-type substrates for exo-type cellulase and ${\beta}$-glucosidase. These results suggest that the cellulase produced from B. subtilis 4-1 is a complex enzyme rather than a mono-enzyme.