• Title/Summary/Keyword: Cellular toxicity

Search Result 381, Processing Time 0.032 seconds

Ferulic Acid Protects INS-1 Pancreatic β Cells Against High Glucose-Induced Apoptosi (INS-1 췌장 베타 세포에서 ferulic acid의 당독성 개선 효과)

  • Jae Eun Park;Ji Sook Han
    • Journal of Life Science
    • /
    • v.34 no.1
    • /
    • pp.9-17
    • /
    • 2024
  • Diabetes mellitus (DM) is one of the main global health problems. Chronic exposure to hyperglycemia can lead to cellular dysfunction that may become irreversible over time, a process that is termed glucose toxicity. Our perspective about glucose toxicity as it pertains to the pancreatic β-cell is that the characteristic decreases in insulin secretion are caused by regulated apoptotic gene expression. In this study, we examined whether ferulic acid protects INS-1 pancreatic cells against high glucose-induced apoptosis. High glucose concentration (30 mM) induced glucotoxicity and death of INS-1 pancreatic β cells. However, treatment with 1, 5, 10, or 20 μM ferulic acid increased the cell viability in a concentration-dependent manner. Treatment with ferulic acid dose-dependently decreased the intracellular levels of reactive oxygen species, thiobarbituric acid reactive substances, and nitric oxide in INS-1 pancreatic β cells pretreated with high glucose. These effects influence the apoptotic pathway, increasing the expression of the anti-apoptotic protein Bcl-2 and reducing the levels of pro-apoptotic proteins, including Bax, cytochrome C, and caspase 9. Annexin V/propidium iodide staining indicated that ferulic acid significantly reduced high glucose-induced apoptosis. These results demonstrate that ferulic acid is a potential therapeutic agent to protect INS-1 pancreatic β cells against high glucose-induced apoptosis.

Enhancement of radiation effect using beta-lapachone and underlying mechanism

  • Ahn, Ki Jung;Lee, Hyung Sik;Bai, Se Kyung;Song, Chang Won
    • Radiation Oncology Journal
    • /
    • v.31 no.2
    • /
    • pp.57-65
    • /
    • 2013
  • Beta-lapachone (${\beta}$-Lap; 3,4-dihydro-2, 2-dimethyl-2H-naphthol[1, 2-b]pyran-5,6-dione) is a novel anti-cancer drug under phase I/II clinical trials. ${\beta}$-Lap has been demonstrated to cause apoptotic and necrotic death in a variety of human cancer cells in vitro and in vivo. The mechanisms underlying the ${\beta}$-Lap toxicity against cancer cells has been controversial. The most recent view is that ${\beta}$-Lap, which is a quinone compound, undergoes two-electron reduction to hydroquinone form utilizing NAD(P)H or NADH as electron source. This two-electron reduction of ${\beta}$-Lap is mediated by NAD(P)H:quinone oxidoreductase (NQO1), which is known to mediate the reduction of many quinone compounds. The hydroquinone forms of ${\beta}$-Lap then spontaneously oxidizes back to the original oxidized ${\beta}$-Lap, creating futile cycling between the oxidized and reduced forms of ${\beta}$-Lap. It is proposed that the futile recycling between oxidized and reduced forms of ${\beta}$-Lap leads to two distinct cell death pathways. First one is that the two-electron reduced ${\beta}$-Lap is converted first to one-electron reduced ${\beta}$-Lap, i.e., semiquinone ${\beta}$-Lap $(SQ)^{{\cdot}-}$ causing production of reactive oxygen species (ROS), which then causes apoptotic cell death. The second mechanism is that severe depletion of NAD(P)H and NADH as a result of futile cycling between the quinone and hydroquinone forms of ${\beta}$-Lap causes severe disturbance in cellular metabolism leading to apoptosis and necrosis. The relative importance of the aforementioned two mechanisms, i.e., generation of ROS or depletion of NAD(P)H/NADH, may vary depending on cell type and environment. Importantly, the NQO1 level in cancer cells has been found to be higher than that in normal cells indicating that ${\beta}$-Lap may be preferentially toxic to cancer cells relative to non-cancer cells. The cellular level of NQO1 has been found to be significantly increased by divergent physical and chemical stresses including ionizing radiation. Recent reports clearly demonstrated that ${\beta}$-Lap and ionizing radiation kill cancer cells in a synergistic manner. Indications are that irradiation of cancer cells causes long-lasting elevation of NQO1, thereby sensitizing the cells to ${\beta}$-Lap. In addition, ${\beta}$-Lap has been shown to inhibit the repair of sublethal radiation damage. Treating experimental tumors growing in the legs of mice with irradiation and intraperitoneal injection of ${\beta}$-Lap suppressed the growth of the tumors in a manner more than additive. Collectively, ${\beta}$-Lap is a potentially useful anti-cancer drug, particularly in combination with radiotherapy.

Effect of Unripe Apple Peel Water Extracts on Tyrosinase Activity and Melanin Production in B16F10 Melanoma Cells (B16F10 melanoma 세포에서 미성숙 사과 과피 열수추출물의 tyrosinase 활성과 melanin 생 성에 미치는 영향)

  • Jang, Young-Ah;Lee, Jin-Tae
    • Journal of Life Science
    • /
    • v.28 no.8
    • /
    • pp.900-907
    • /
    • 2018
  • This study was carried out to evaluate the possibility of unripe apple peel water extracts as cosmetic materials and to evaluate the biological activities of the antioxidant and whitening effects of the samples. The antioxidative properties of the samples were confirmed by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) cation radical scavenging ability. To evaluate the whitening effect of the samples, several analytical techniques were used, including toxicity evaluations of the samples by MTT assays. Measurements of the inhibition rates of cellular tyrosinase, melanin synthesis rates, and expression rates of whitening-related proteins and genes were confirmed using melanoma (B16F10 cell). At equivalent unripe apple peel water concentrations ($1,000{\mu}g/ml$), the DPPH radical scavenging and the ABTS cation radical scavenging activities were 77.3% and 93.1%, respectively. The whitening activity evaluation showed that tyrosinase activity and melanin synthesis were inhibited by 19.8% and 17.3%, respectively, at unripe apple peel water extract concentrations of $50{\mu}g/ml$. In B16F10 cells induced by ${\alpha}$-MSH, the expression of tyrosinase, TRP-1, and TRP-2 decreased. Also, the activity of the transcription factor MITF was inhibited. In real-time PCR experiments, the expression of related genes at the upstream signal level was also found to be progressively lowered as the concentration of unripe apple peel water extracts increased. From these results, it was confirmed that the unripe apple peel water extracts showed excellent whitening efficacy and could be used as safe, natural, raw cosmetic material in the future.

Imipramine enhances neuroprotective effect of PEP-1-Catalase against ischemic neuronal damage

  • Kim, Dae-Won;Kim, Duk-Soo;Kim, Mi-Jin;Kwon, Soon-Won;Ahn, Eun-Hee;Jeong, Hoon-Jae;Sohn, Eun-Jeong;Dutta, Suman;Lim, Soon-Sung;Cho, Sung-Woo;Lee, Kil-Soo;Park, Jin-Seu;Eum, Won-Sik;Hwang, Hyun-Sook;Choi, Soo-Young
    • BMB Reports
    • /
    • v.44 no.10
    • /
    • pp.647-652
    • /
    • 2011
  • The protein transduction domains have been reported to have potential to deliver the exogenous molecules, including proteins, to living cells. However, poor transduction of proteins limits therapeutic application. In this study, we examined whether imipramine could stimulate the transduction efficiency of PEP-1 fused proteins into astrocytes. PEP-1-catalase (PEP-1-CAT) was transduced into astrocytes in a time- and dose-dependent manner, reducing cellular toxicity induced by $H_2O_2$. Additionally, the group of PEP-1-CAT + imipramine showed enhancement of transduction efficiency and therefore increased cellular viability than that of PEP-1-CAT alone. In the gerbil ischemia models, PEP-1-CAT displayed significant neuroprotection in the CA1 region of the hippocampus. Interestingly, PEP-1-CAT + imipramine prevented neuronal cell death and lipid peroxidation more markedly than PEP-1-CAT alone. Therefore, our results suggest that imipramine can be used as a drug to enhance the transduction of PEP-1 fusion proteins to cells or animals and their efficacies against various disorders.

In Vitro Magnetometric Evaluation far Toxicity to Alverolar Macrophage of Arsenic Compounds (In Vitro 자계(磁界) 측정에 의한 비소화합물의 폐포 Macrophage 독성 평가)

  • Cho, Young-Chae
    • Journal of Preventive Medicine and Public Health
    • /
    • v.32 no.4
    • /
    • pp.467-472
    • /
    • 1999
  • Objectives: This study was conducted to evaluate the cytotoxicity of gallium arsenide(GaAs), indium phosphide(InP) and indium arsenide(InAs) all of which are used a$ the semiconductor eletments in semiconductor industry. Methods: Cytotoxicity id the alveolar macrophage was evaluated by the measurement of in vitro magnetometry, LDH release assay and histological examination. Results: The relaxation curves by the in vitro magnetometry showed that GaAs has the cytotoxicity for the alveolar macrophage which is more significant in the higher dosages, while this cytotoxicity is not appeared in the groups added with InP or InAs or PBS. In the decay constant for two minutes after magnetization, GaAs-added groups showed a significant decrease with increasing doses, but both InP- and InAs-added groups did not show any significance. The LDH release assay showed a dose-dependent increasing tendency in the GaAs-, InP- and InAs-added groups. In terms of cellular morphological changes, GaAs-added groups revealed such severe cellular damages as prominent destructions in cell membranes and their morphological changes of nucleus, while InP- and InAs-added groups remained intact in intracellular structures, except for cytoplasmic degenerations. Conclusions: It is suggested that GaAs is more influential to cytotoxicity of alveolar macrophages than InP and InAs.

  • PDF

A Study on the Inhibitory Effect of Yeongdamsagantang on Alzheimer in $A{\beta}-oligomer-induced$ Neuro 2A Cell Lines (($A{\beta}-oligomer$로 유도된 Neuro2A 세포주에서 용담사간탕(龍膽瀉肝湯)의 치매 억제 효과)

  • Kim, Hae-Su;Shin, Yoo-Jeong;Park, Jong-Hyuk;Kim, Seung-Mo;Paek, Kyung-Min;Park, Chi-Sang
    • The Journal of Korean Medicine
    • /
    • v.29 no.2
    • /
    • pp.151-164
    • /
    • 2008
  • Objective: To investigate the effects of Yeongdamsagantang (YDGT) on apoptosis of neuronal cells that can result in dementia. Method: The water extract of the YDGT was tested in vitro for its beneficial effects on neuronal survival and neuroprotective functions, particularly in connection with $A{\beta}$ oligomer-related dementias. $A{\beta}$ oligomers derived from proteolytic processing of the ${\beta}-amyloid$ precursor protein (APP), including the $amyloid-{\beta}$ peptide $(A{\beta})$, play a critical role in the pathogenesis of Alzheimer's disease. A neuroblastoma cell line stably expressing an $A{\beta}$ oligomerassociated neuronal degeneration was used to investigate if YDGT inhibits formation of $A{\beta}$ oligomer. To measure the ATP generating level in mitochondrial membrane, luciferin/luciferase luminescence kit (Promega) and luminator was used, and to survey the protein's apparition, confocal microscopy was used. Result: $A{\beta}oligomer$ had a profound attenuation in the increase in CT105 expressing neuro2A cells from YDGT. Experimental evidence indicates that YDGT protected against neuronal damage from cells, but its cellular and molecular mechanisms remain unknown. We demonstrated that YDGT inhibited formation of $amyloid-{\beta}$ $(A{\beta})$ oligomers, which were the behavior, and possibly causative, features of AD. The decreased $A{\beta}$ oligomer in the presence of YDGT was observed in the conditioned medium of this $A{\beta}oligomer-secreting$ cell line under in vitro. In the cells, YDGT significantly attenuated mitochondrion-initiated apoptosis. Conclusion: (i) a direct $A{\beta}$ oligomer toxicity and the apoptosis initiated by the mitochondria; and (ii) multiple cellular and molecular neuroprotective mechanisms, including attenuation of apoptosis and direct inhibition of $A{\beta}$ oligomer aggregation, underlie the neuroprotective effects of YDGT.

  • PDF

Standardization of Quality and Inhibitory Effect of Alzheimer in $A{\beta}$ Oligomer-induced H19-7 Cells by LMK02 (LMK02의 품질규격화와 $A{\beta}$ 올리고머에 의해 유도된 희주해마 H19-7세포주에 미치는 항치매효과)

  • Kang, Hyung-Won;Kim, Sang-Tae;Son, Hyeong-Jin;Han, Pyeong-Leem;Cho, Hyoung-Kwon;Lee, Young-Jae;Lyu, Yeoung-Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.397-404
    • /
    • 2009
  • For standardization of LMK02 quality, Ginsenoside Rg3 of Red Ginseng and Decursin of Angelica gigas Nakai in the constituents of LMK02 were estimated as indicative components. From LMK02 water extract, has been used in vitro test for its beneficial effects on neuronal survival and neuroprotective functions, particularly in connection with APP-related dementias and Alzheimer's disease (AD). $A{\beta}$ oligomer derived from proteolytic processing of the ${\beta}$-amyloid precursor protein (APP), including the amyloid-${\beta}$ peptide ($A{\beta}$), play a critical role in the pathogenesis of Alzheimer's dementia. We determined that oligomer amyloid-${\beta}$ ($A{\beta}$) have a profound attenuation in the increase in rat hippocampus H19-7 cells from. Experimental evidence indicates that LMK02 protects against neuronal damage from cells, but its cellular and molecular mechanisms remain unknown. Using a hippocampus cell line on $A{\beta}$ oligomer-induced neuronal cytotoxicity, we demonstrated that LMK02 inhibits formation of $A{\beta}$ oligomer, which are the behavior, and possibly causative, feature of AD. In the Red Ginseng, the average amounts of Ginsenoside Rg3 were $47.04{\mu}g/g$ and $42.3{\mu}g/g$, 90 % of its weight were set as a standard value. And, in the Angelica gigas Nakai, the average amounts of Decursin were 2.71 mg/g and 2.44mg/g, 90 % of its weight were also set as a standard value. The attenuated $A{\beta}$ oligomer in the presence of LMK02 was observed in the conditioned medium of this $A{\beta}$ oligomer-induced cells under in vitro. In the cells, LMK02 significantly activated antiapoptosis and decreased the production of ROS. These results suggest that neuronal damage in AD might be due to two factors: a direct $A{\beta}$ oligomer toxicity and multiple cellular and molecular neuroprotective mechanisms, including attenuation of apoptosis and direct inhibition of $A{\beta}$ oligomer, underlie the neuroprotective effects of LMK02 treatment.

Protective effects of PEP-1-Catalase on stress-induced cellular toxicity and MPTP-induced Parkinson's disease

  • Eom, Seon Ae;Kim, Dae Won;Shin, Min Jea;Ahn, Eun Hee;Chung, Seok Young;Sohn, Eun Jeong;Jo, Hyo Sang;Jeon, Su-Jeong;Kim, Duk-Soo;Kwon, Hyeok Yil;Cho, Sung-Woo;Han, Kyu Hyung;Park, Jinseu;Eum, Won Sik;Choi, Soo Young
    • BMB Reports
    • /
    • v.48 no.7
    • /
    • pp.395-400
    • /
    • 2015
  • Parkinson's disease (PD) is a neurodegenerative disability caused by a decrease of dopaminergic neurons in the substantia nigra (SN). Although the etiology of PD is not clear, oxidative stress is believed to lead to PD. Catalase is antioxidant enzyme which plays an active role in cells as a reactive oxygen species (ROS) scavenger. Thus, we investigated whether PEP-1-Catalase protects against 1-methyl-4-phenylpyridinium (MPP+) induced SH-SY5Y neuronal cell death and in a 1-methyl-4-phenyl-1,2,3,6-trtrahydropyridine (MPTP) induced PD animal model. PEP-1-Catalase transduced into SH-SY5Y cells significantly protecting them against MPP+-induced death by decreasing ROS and regulating cellular survival signals including Akt, Bax, Bcl-2, and p38. Immunohistochemical analysis showed that transduced PEP-1-Catalase markedly protected against neuronal cell death in the SN in the PD animal model. Our results indicate that PEP-1-Catalase may have potential as a therapeutic agent for PD and other oxidative stress related diseases. [BMB Reports 2015; 48(7): 395-400]

Adjuvant Effect of Polysaccharides from Aboveground Parts of Astragalus membranaceus (황기 지상부 다당체의 면역 및 백신보조 효과)

  • Yang, Su Jin;Lee, Si Young;Lee, Hannah;Park, Yeong Chul;Choi, Seon Kang;Yu, Chang Yeon;Chung, Ill Min;Lim, Jung Dae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.5
    • /
    • pp.408-419
    • /
    • 2016
  • Background: In recent years, adjuvants have received increasing attention owing to the development of purified subunit and synthetic vaccines which are poor immunogens and require additional adjuvants to evoke an immune response. Therefore, immunologic adjuvants have been developed and tested. Plant polysaccharides have been recognized as effective biological response modifiers with low toxicity. Methods and Results: In this study, the polysaccharide from the aboveground part of Astragalus membranaceus Bunge containing immunomodulating arabino-3,6-galactan was evaluated for its hemolytic activity and adjuvant potential in the specific cellular and humoral immune responses to ovalbumin. The polysaccharide from the aboveground part of Astragalus membranaceus Bunge was co-immunized with the purified Vi capsular polysaccharide of Salmonella typhi vaccine in mice. The polysaccharide from the aboveground part of Astragalus membranaceus Bunge did not induce any hemolytic activity or side effects at doses up to $500{\mu}g/m{\ell}$. The concanavalin A-, lipopolysaccharide-, and ovalbumin-induced splenocyte proliferation and serum ovalbumin-specific IgG, IgG1 and IgG2b antibody titers in immunized mice were significantly enhanced by AMA. Pharmacological data revealed that the polysaccharide from the aboveground part of Astragalus membranaceus Bunge increased antigen-specific antibody levels in immunized mice. The polysaccharide from the aboveground part of Astragalus membranaceus Bunge-adjuvanted purified Vi capsular polysaccharide of Salmonella typhi vaccine improved the proliferation of splenocytes and macrophages as well as stimulated cytokine production. Conclusions: These results suggest that the polysaccharide from the aboveground part of Astragalus membranaceus Bunge-adjuvanted vaccines enhanced humoral and cellular immunity and that the polysaccharide from the aboveground part of Astragalus membranaceus Bunge is a safe and efficacious adjuvant candidate suitable for use in prophylactic and therapeutic vaccines.

Effect of acidic solutions on the microhardness of dentin and set OrthoMTA and their cytotoxicity on murine macrophage

  • Oh, Soram;Perinpanayagam, Hiran;Lee, Yoon;Kum, Jae-Won;Yoo, Yeon-Jee;Lim, Sang-Min;Chang, Seok Woo;Shon, Won-Jun;Lee, Woocheol;Baek, Seung-Ho;Kum, Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.1
    • /
    • pp.12-21
    • /
    • 2016
  • Objectives: To evaluate the effects of three acids on the microhardness of set mineral trioxide aggregate (MTA) and root dentin, and cytotoxicity on murine macrophage. Materials and Methods: OrthoMTA (BioMTA) was mixed and packed into the human root dentin blocks of 1.5 mm diameter and 5 mm height. Four groups, each of ten roots, were exposed to 10% citric acid (CA), 5% glycolic acid (GA), 17% ethylenediaminetetraacetic acid (EDTA), and saline for five minutes after setting of the OrthoMTA. Vickers surface microhardness of set MTA and dentin was measured before and after exposure to solutions, and compared between groups using one-way ANOVA with Tukey test. The microhardness value of each group was analyzed using student t test. Acid-treated OrthoMTA and dentin was examined by scanning electron microscope (SEM). Cell viability of tested solutions was assessed using WST-8 assay and murine macrophage. Results: Three test solutions reduced microhardness of dentin. 17% EDTA demonstrated severe dentinal erosion, significantly reduced the dentinal microhardness compared to 10% CA (p = 0.034) or 5% GA (p = 0.006). 10% CA or 5% GA significantly reduced the surface microhardness of set MTA compared to 17% EDTA and saline (p < 0.001). Acid-treated OrthoMTA demonstrated microporous structure with destruction of globular crystal. EDTA exhibited significantly more cellular toxicity than the other acidic solutions at diluted concentrations (0.2, 0.5, 1.0%). Conclusions: Tested acidic solutions reduced microhardness of root dentin. Five minute's application of 10% CA and 5% GA significantly reduced the microhardness of set OrthoMTA with lower cellular cytotoxicity compared to 17% EDTA.