• Title/Summary/Keyword: Cellular proliferation

Search Result 1,028, Processing Time 0.035 seconds

Minoxidil Regulates Aging-Like Phenotypes in Rat Cortical Astrocytes In Vitro

  • Minji Bang;Seung Jin Yang;TaeJin Ahn;Seol-Heui Han;Chan Young Shin;Kyoung Ja Kwon
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.116-126
    • /
    • 2023
  • Mainly due to the slanted focus on the mechanism and regulation of neuronal aging, research on astrocyte aging and its modulation during brain aging is scarce. In this study, we established aged astrocyte culture model by long-term culturing. Cellular senescence was confirmed through SA-β-gal staining as well as through the examination of morphological, molecular, and functional markers. RNA sequencing and functional analysis of astrocytes were performed to further investigate the detailed characteristics of the aged astrocyte model. Along with aged phenotypes, decreased astrocytic proliferation, migration, mitochondrial energetic function and support for neuronal survival and differentiation has been observed in aged astrocytes. In addition, increased expression of cytokines and chemokine-related factors including plasminogen activator inhibitor -1 (PAI-1) was observed in aged astrocytes. Using the RNA sequencing results, we searched potential drugs that can normalize the dysregulated gene expression pattern observed in long-term cultured aged astrocytes. Among several candidates, minoxidil, a pyrimidine-derived anti-hypertensive and anti-pattern hair loss drug, normalized the increased number of SA-β-gal positive cells and nuclear size in aged astrocytes. In addition, minoxidil restored up-regulated activity of PAI-1 and increased mitochondrial superoxide production in aged astrocytes. We concluded that long term culture of astrocytes can be used as a reliable model for the study of astrocyte senescence and minoxidil can be a plausible candidate for the regulation of brain aging.

RUNX1 Ameliorates Rheumatoid Arthritis Progression through Epigenetic Inhibition of LRRC15

  • Hao Ding;Xiaoliang Mei;Lintao Li;Peng Fang;Ting Guo;Jianning Zhao
    • Molecules and Cells
    • /
    • v.46 no.4
    • /
    • pp.231-244
    • /
    • 2023
  • Leucine-rich repeat containing 15 (LRRC15) has been identified as a contributing factor for cartilage damage in osteoarthritis; however, its involvement in rheumatoid arthritis (RA) and the underlying mechanisms have not been well characterized. The purpose of this study was to explore the function of LRRC15 in RA-associated fibroblast-like synoviocytes (RA-FLS) and in mice with collagen-induced arthritis (CIA) and to dissect the epigenetic mechanisms involved. LRRC15 was overexpressed in the synovial tissues of patients with RA, and LRRC15 overexpression was associated with increased proliferative, migratory, invasive, and angiogenic capacities of RA-FLS and accelerated release of pro-inflammatory cytokines. LRRC15 knockdown significantly inhibited synovial proliferation and reduced bone invasion and destruction in CIA mice. Runt-related transcription factor 1 (RUNX1) transcriptionally represses LRRC15 by binding to core-binding factor subunit beta (CBF-β). Overexpression of RUNX1 significantly inhibited the invasive phenotype of RA-FLS and suppressed the expression of proinflammatory cytokines. Conversely, the effects of RUNX1 were significantly reversed after overexpression of LRRC15 or inhibition of RUNX1-CBF-β interactions. Therefore, we demonstrated that RUNX1-mediated transcriptional repression of LRRC15 inhibited the development of RA, which may have therapeutic effects for RA patients.

Unveiling the impact of lysosomal ion channels: balancing ion signaling and disease pathogenesis

  • Yoona Jung;Wonjoon Kim;Na Kyoung Shin;Young Min Bae;Jinhong Wie
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.4
    • /
    • pp.311-323
    • /
    • 2023
  • Ion homeostasis, which is regulated by ion channels, is crucial for intracellular signaling. These channels are involved in diverse signaling pathways, including cell proliferation, migration, and intracellular calcium dynamics. Consequently, ion channel dysfunction can lead to various diseases. In addition, these channels are present in the plasma membrane and intracellular organelles. However, our understanding of the function of intracellular organellar ion channels is limited. Recent advancements in electrophysiological techniques have enabled us to record ion channels within intracellular organelles and thus learn more about their functions. Autophagy is a vital process of intracellular protein degradation that facilitates the breakdown of aged, unnecessary, and harmful proteins into their amino acid residues. Lysosomes, which were previously considered protein-degrading garbage boxes, are now recognized as crucial intracellular sensors that play significant roles in normal signaling and disease pathogenesis. Lysosomes participate in various processes, including digestion, recycling, exocytosis, calcium signaling, nutrient sensing, and wound repair, highlighting the importance of ion channels in these signaling pathways. This review focuses on different lysosomal ion channels, including those associated with diseases, and provides insights into their cellular functions. By summarizing the existing knowledge and literature, this review emphasizes the need for further research in this field. Ultimately, this study aims to provide novel perspectives on the regulation of lysosomal ion channels and the significance of ion-associated signaling in intracellular functions to develop innovative therapeutic targets for rare and lysosomal storage diseases.

NANOG expression in parthenogenetic porcine blastocysts is required for intact lineage specification and pluripotency

  • Mingyun Lee;Jong-Nam Oh;Gyung Cheol Choe;Kwang-Hwan Choi;Dong-Kyung Lee;Seung-Hun Kim;Jinsol Jeong;Yelim Ahn;Chang-Kyu Lee
    • Animal Bioscience
    • /
    • v.36 no.12
    • /
    • pp.1905-1917
    • /
    • 2023
  • Objective: Nanog homeobox (NANOG) is a core transcription factor that contributes to pluripotency along with octamer binding transcription factor-4 (OCT4) and sex determining region-Y box-2 (SOX2). It is an epiblast lineage marker in mammalian pre-implantation embryos and exhibits a species-specific expression pattern. Therefore, it is important to understand the lineage of NANOG, the trophectoderm, and the primitive endoderm in the pig embryo. Methods: A loss- and gain-of-function analysis was done to determine the role of NANOG in lineage specification in parthenogenetic porcine blastocysts. We analyzed the relationship between NANOG and pluripotent core transcription factors and other lineage makers. Results: In NANOG-null late blastocysts, OCT4-, SOX2-, and SOX17-positive cells were decreased, whereas GATA binding protein 6 (GATA6)-positive cells were increased. Quantitative real-time polymerase chain reaction revealed that the expression of SOX2 was decreased in NANOG-null blastocysts, whereas that of primitive endoderm makers, except SOX17, was increased. In NANOG-overexpressing blastocysts, caudal type homeobox 2 (CDX2-), SOX17-, and GATA6-positive cells were decreased. The results indicated that the expression of primitive endoderm markers and trophectoderm-related genes was decreased. Conclusion: Taken together, the results demonstrate that NANOG is involved in the epiblast and primitive endoderm differentiation and is essential for maintaining pluripotency within the epiblast.

Novel artesunate-metformin conjugate inhibits bladder cancer cell growth associated with Clusterin/SREBP1/FASN signaling pathway

  • Peiyu Lin;Xiyue Yang;Linghui Wang;Xin Zou;Lingli Mu;Cangcang Xu;Xiaoping Yang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.3
    • /
    • pp.219-227
    • /
    • 2024
  • Bladder cancer remains the 10th most common cancer worldwide. In recent years, metformin has been found to have potential anti-bladder cancer activity while high concentration of IC50 at millimolar level is needed, which could not be reached by regular oral administration route. Thus, higher efficient agent is urgently demanded for clinically treating bladder cancer. Here, by conjugating artesunate to metformin, a novel artesunate-metformin dimer triazine derivative AM2 was designed and synthesized. The inhibitory effect of AM2 on bladder cancer cell line T24 and the mechanism underlying was determined. Anti-tumor activity of AM2 was assessed by MTT, cloning formation and wound healing assays. Decreasing effect of AM2 on lipogenesis was determined by oil red O staining. The protein expressions of Clusterin, SREBP1 and FASN in T24 cells were evaluated by Western blotting. The results show that AM2 significantly inhibited cell proliferation and migration at micromolar level, much higher than parental metformin. AM2 reduced lipogenesis and down-regulated the expressions of Clusterin, SREBP1 and FASN. These results suggest that AM2 inhibits the growth of bladder cancer cells T24 by inhibiting cellular lipogenesis associated with the Clusterin/SREBP1/FASN signaling pathway.

Intranasal Immunization With Nanoparticles Containing an Orientia tsutsugamushi Protein Vaccine Candidate and a Polysorbitol Transporter Adjuvant Enhances Both Humoral and Cellular Immune Responses

  • Cheol Gyun Kim;Won Kyong Kim;Narae Kim;Young Jin Pyung;Da-Jeong Park;Jeong-Cheol Lee;Chong-Su Cho;Hyuk Chu;Cheol-Heui Yun
    • IMMUNE NETWORK
    • /
    • v.23 no.6
    • /
    • pp.47.1-47.16
    • /
    • 2023
  • Scrub typhus, a mite-borne infectious disease, is caused by Orientia tsutsugamushi. Despite many attempts to develop a protective strategy, an effective preventive vaccine has not been developed. The identification of appropriate Ags that cover diverse antigenic strains and provide long-lasting immunity is a fundamental challenge in the development of a scrub typhus vaccine. We investigated whether this limitation could be overcome by harnessing the nanoparticle-forming polysorbitol transporter (PST) for an O. tsutsugamushi vaccine strategy. Two target proteins, 56-kDa type-specific Ag (TSA56) and surface cell Ag A (ScaA) were used as vaccine candidates. PST formed stable nano-size complexes with TSA56 (TSA56-PST) and ScaA (ScaA-PST); neither exhibited cytotoxicity. The formation of Ag-specific IgG2a, IgG2b, and IgA in mice was enhanced by intranasal vaccination with TSA56-PST or ScaA-PST. The vaccines containing PST induced Ag-specific proliferation of CD8+ and CD4+ T cells. Furthermore, the vaccines containing PST improved the mouse survival against O. tsutsugamushi infection. Collectively, the present study indicated that PST could enhance both Ag-specific humoral immunity and T cell response, which are essential to effectively confer protective immunity against O. tsutsugamushi infection. These findings suggest that PST has potential for use in an intranasal vaccination strategy.

Salmonella vector induces protective immunity against Lawsonia and Salmonella in murine model using prokaryotic expression system

  • Sungwoo Park;Eunseok Cho;Amal Senevirathne;Hak-Jae Chung;Seungmin Ha;Chae-Hyun Kim;Seogjin Kang;John Hwa Lee
    • Journal of Veterinary Science
    • /
    • v.25 no.1
    • /
    • pp.4.1-4.14
    • /
    • 2024
  • Background: Lawsonia intracellularis is the causative agent of proliferative enteropathy and is associated with several outbreaks, causing substantial economic loss to the porcine industry. Objectives: In this study, we focused on demonstrating the protective effect in the mouse model through the immunological bases of two vaccine strains against porcine proliferative enteritis. Methods: We used live-attenuated Salmonella Typhimurium (ST) secreting two selected immunogenic LI antigens (Lawsonia autotransporter A epitopes and flagellin [FliC]-peptidoglycan-associated lipoprotein-FliC) as the vaccine carrier. The constructs were cloned into a Salmonella expression vector (pJHL65) and transformed into the ST strain (JOL912). The expression of immunogenic proteins within Salmonella was evaluated via immunoblotting. Results: Immunizing BALB/c mice orally and subcutaneously induced high levels of LI-specific systemic immunoglobulin G and mucosal secretory immunoglobulin A. In immunized mice, there was significant upregulation of interferon-γ and interleukin-4 cytokine mRNA and an increase in the subpopulations of cluster of differentiation (CD) 4+ and CD 8+ T lymphocytes upon splenocytes re-stimulation with LI antigens. We observed significant protection in C57BL/6 mice against challenge with 106.9 times the median tissue culture infectious dose of LI or 2 × 109 colony-forming units of the virulent ST strain. Immunizing mice with either individual vaccine strains or co-mixture inhibited bacterial proliferation, with a marked reduction in the percentage of mice shedding Lawsonia in their feces. Conclusions: Salmonella-mediated LI gene delivery induces robust humoral and cellular immune reactions, leading to significant protection against LI and salmonellosis.

Rapid Local Recurrence of Breast Myoepithelial Carcinoma Arising in Adenomyoepithelioma: A Case Report (빠른 국소 재발을 보인 유방의 선근상피종에서 발생한 근상피암: 증례 보고)

  • Mo In Ha;Bo Kyoung Seo;Jung Woo Choi
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.1
    • /
    • pp.207-212
    • /
    • 2020
  • Adenomyoepithelioma (AME) is a rare breast neoplasm composed of both epithelial and myoepithelial cells with biphasic proliferation. Although most AMEs are benign, malignant transformation of either or both cellular components may occur. This report describes an unusual rapid local tumor recurrence a month after excision of the myoepithelial carcinoma arising in an AME. Ultrasound and MRI showed small recurrent masses in the superficial part of a hematoma. This report suggests the benefit of immediate postoperative breast imaging in patients with malignant AME with potential for local recurrence, such as those with narrow resection margins or high mitotic activity.

Phloroglucinol Enhances Anagen Signaling and Alleviates H2O2-Induced Oxidative Stress in Human Dermal Papilla Cells

  • Seokmuk Park;Ye Jin Lim;Hee Su Kim;Hee-Jae Shin;Ji-Seon Kim;Jae Nam Lee;Jae Ho Lee;Seunghee Bae
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.812-827
    • /
    • 2024
  • Phloroglucinol (PG) is one of the abundant isomeric benzenetriols in brown algae. Due to its polyphenolic structure, PG exhibits various biological activities. However, the impact of PG on anagen signaling and oxidative stress in human dermal papilla cells (HDPCs) is unknown. In this study, we investigated the therapeutic potential of PG for improving hair loss. A non-cytotoxic concentration of PG increased anagen-inductive genes and transcriptional activities of β-Catenin. Since several anagen-inductive genes are regulated by β-Catenin, further experiments were performed to elucidate the molecular mechanism by which PG upregulates anagen signaling. Various biochemical analyses revealed that PG upregulated β-Catenin signaling without affecting the expression of Wnt. In particular, PG elevated the phosphorylation of protein kinase B (AKT), leading to an increase in the inhibitory phosphorylation of glycogen synthase kinase 3 beta (GSK3β) at serine 9. Treatment with the selective phosphoinositide 3-kinase/AKT inhibitor, LY294002, restored the increased AKT/GSK3β/β-Catenin signaling and anagen-inductive proteins induced by PG. Moreover, conditioned medium from PG-treated HDPCs promoted the proliferation and migration of human epidermal keratinocytes via the AKT signaling pathway. Subsequently, we assessed the antioxidant activities of PG. PG ameliorated the elevated oxidative stress markers and improved the decreased anagen signaling in hydrogen peroxide (H2O2)-induced HDPCs. The senescence-associated β-galactosidase staining assay also demonstrated that the antioxidant abilities of PG effectively mitigated H2O2-induced senescence. Overall, these results indicate that PG potentially enhances anagen signaling and improves oxidative stress-induced cellular damage in HDPCs. Therefore, PG can be employed as a novel therapeutic component to ameliorate hair loss symptoms.

The Effect of the IGF-I treated Gingival and Periodontal Ligament Fibroblast on Osteoblasts (IGF-I으로 처리한 치은 및 치주인대 섬유모세포가 골모세포에 미치는 영향)

  • Kim, Mi-Jeong;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • v.31 no.6 s.89
    • /
    • pp.589-600
    • /
    • 2001
  • Insulin-like growth factor I (IGF-I) has the local tissue regulating actions. In bone, IGF-I increases the replication of osteoblastic lineage, probably preosteoblasts, and enhances osteoblastic collagen synthesis and matrix composition rates. The purpose of this study was to investigate the local regulatory effect of IGF-I on periodontium totally, both in an autocrine and paracrine manner. To examine the effect of IGF-I directly on osteoblast (OB) of test rats, and indirectlv on OB via periodontal ligament fibroblast (PDLF), and the effect of gingival fibroblast (GF) on OB via cellular paracrine manner for the understanding of humoral action of adjacent tissue, GF and PDLF were obtained from male Sprague-Dawley rats of six to eight weeks of age. OB was obtained iron frontal and parietal calvarial bone of Sprague-Dawley 21day-old-fetus. After each tell was Incubated 24 hours, for collecting conditioned medium, different concentrations of IGF-I (1,10,100 ng/ml,1ml/well) was adding in the GF, PDLF cells, and the supernatant from these cultures was put into the primary OB culture with $1{\times}10^4$cell/ml/well. The experimental group was divided into six groups control OB, IGF-I treated OB, OB culture with conditioned medium from PDLF, OB culture with conditioned medium from IGF-I treated PDLF, OB culture with conditioned medium from GF, OB culture with conditioned medium from IGF-I treated GF. After final IGF-I treatment, OB was Incubated for 24 hours, and alkaline phosphatase activity assay, BMP expression, cell proliferation measurement using MTT assay, total protein measurement, Collagen synthesis assay using western blot, and examination of bone nodule synthesis were done. Alkaline phosphatase expressions were increased in the group of PDLF-IGF-I supernatant treatment. Direct IGF-I treatment with concentrations of 100ng/m1 showed increased viable tell number measured by MTT assay. And IGF-I treatment did not increase total protein amount. The entire experimental group showed BMP2, 4 expression in western blot, and there was no significant difference between control and experimental groups. These results suggested that supernatant from PDLF effects on increasing cellular activities of OB regardless of IGF-I, and at high concentration, IGF-I increases OB tell proliferation.

  • PDF