• 제목/요약/키워드: Cellular pathway

검색결과 929건 처리시간 0.02초

Genotoxicity and Identification of Differentially Expressed Genes of Formaldehyde in human Jurkat Cells

  • Kim, Youn-Jung;Kim, Mi-Soon;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제1권4호
    • /
    • pp.230-236
    • /
    • 2005
  • Formaldehyde is a common environmental contaminant found in tobacco smoke, paint, garments, diesel and exhaust, and medical and industrial products. Formaldehyde has been considered to be potentially carcinogenic, making it a subject of major environmental concern. However, only a little information on the mechanism of immunological sensitization and asthma by this compound has been known. So, we performed with Jurkat cell line, a human T lymphocyte, to assess the induction of DNA damage and to identify the DEGs related to immune response or toxicity by formaldehyde. In this study, we investigated the induction of DNA single strand breaks by formaldehyde using single cell gel electrophoresis assay (comet assay). And we compared gene expression between control and formaldehyde treatment to identify genes that are specifically or predominantly expressed by employing annealing control primer (ACP)-based $GeneFishing^{TM}$ method. The cytotoxicity ($IC_{30}$) of formaldehyde was determined above the 0.65 mM in Jurkat cell in 48 h treatment. Based on the $IC_{30}$ value from cytotoxicity test, we performed the comet assay in this concentration. From these results, 0.65 mM of formaldehyde was not revealed significant DNA damages in the absence of S-9 metabolic activation system. And the one differentially expressed gene (DEG) of formaldehyde was identified to zinc finger protein 292 using $GeneFishing^{TM}$ method. Through further investigation, we will identify more meaningful and useful DEGs on formaldehyde, and then can get the information on the associated mechanism and pathway with immune response or other toxicity by formaldehyde exposure.

Transient Receptor Potential Cation Channel V1 (TRPV1) Is Degraded by Starvation- and Glucocorticoid-Mediated Autophagy

  • Ahn, Seyoung;Park, Jungyun;An, Inkyung;Jung, Sung Jun;Hwang, Jungwook
    • Molecules and Cells
    • /
    • 제37권3호
    • /
    • pp.257-263
    • /
    • 2014
  • A mammalian cell renovates itself by autophagy, a process through which cellular components are recycled to produce energy and maintain homeostasis. Recently, the abundance of gap junction proteins was shown to be regulated by autophagy during starvation conditions, suggesting that transmembrane proteins are also regulated by autophagy. Transient receptor potential vanilloid type 1 (TRPV1), an ion channel localized to the plasma membrane and endoplasmic reticulum (ER), is a sensory transducer that is activated by a wide variety of exogenous and endogenous physical and chemical stimuli. Intriguingly, the abundance of cellular TRPV1 can change dynamically under pathological conditions. However, the mechanisms by which the protein levels of TRPV1 are regulated have not yet been explored. Therefore, we investigated the mechanisms of TRPV1 recycling using HeLa cells constitutively expressing TRPV1. Endogenous TRPV1 was degraded in starvation conditions; this degradation was blocked by chloroquine (CLQ), 3MA, or downregulation of Atg7. Interestingly, a glucocorticoid (cortisol) was capable of inducing autophagy in HeLa cells. Cortisol increased cellular conversion of LC3-I to LC-3II, leading autophagy and resulting in TRPV1 degradation, which was similarly inhibited by treatment with CLQ, 3MA, or downregulation of Atg7. Furthermore, cortisol treatment induced the colocalization of GFP-LC3 with endogenous TRPV1. Cumulatively, these observations provide evidence that degradation of TRPV1 is mediated by autophagy, and that this pathway can be enhanced by cortisol.

Dihydroartemisinin inhibits HepG2.2.15 proliferation by inducing cellular senescence and autophagy

  • Zou, Jiang;Ma, Qiang;Sun, Ru;Cai, Jiajing;Liao, Hebin;Xu, Lei;Xia, Jingruo;Huang, Guangcheng;Yao, Lihua;Cai, Yan;Zhong, Xiaowu;Guo, Xiaolan
    • BMB Reports
    • /
    • 제52권8호
    • /
    • pp.520-525
    • /
    • 2019
  • Dihydroartemisinin (DHA) has been reported to possess anti-cancer activity against many cancers. However, the pharmacologic effect of DHA on HBV-positive hepatocellular carcinoma (HCC) remains unknown. Thus, the objective of the present study was to determine whether DHA could inhibit the proliferation of HepG2.2.15 cells and uncover the underlying mechanisms involved in the effect of DHA on HepG2.2.15 cells. We found that DHA effectively inhibited HepG2.2.15 HCC cell proliferation both in vivo and in vitro. DHA also reduced the migration and tumorigenicity capacity of HepG2.2.15 cells. Regarding the underlying mechanisms, results showed that DHA induced cellular senescence by up-regulating expression levels of proteins such as p-ATM, p-ATR, ${\gamma}-H_2AX$, P53, and P21 involved in DNA damage response. DHA also induced autophagy (green LC3 puncta gathered together and LC3II/LC3I ratio increased through AKT-mTOR pathway suppression). Results also revealed that DHA-induced autophagy was not linked to senescence or cell death. TPP1 (telomere shelterin) overexpression could not rescue DHA-induced anticancer activity (cell proliferation). Moreover, DHA down-regulated TPP1 expression. Gene knockdown of TPP1 caused similar phenotypes and mechanisms as DHA induced phenotypes and mechanisms in HepG2.2.15 cells. These results demonstrate that DHA might inhibit HepG2.2.15 cells proliferation through inducing cellular senescence and autophagy.

Therapeutic Potentiality of Celtis choseniana Nakai on Androgenic Alopecia through Repression of Androgen Action and Modulation of Wnt/β-catenin Signaling

  • Hui-Ju Lee;Geum-Lan Hong;Kyung-Hyun Kim;Yae-Ji Kim;Tae-Won Kim;Ju-Young Jung
    • Natural Product Sciences
    • /
    • 제29권1호
    • /
    • pp.31-37
    • /
    • 2023
  • In this study, we investigated the efficacy of Celtis choseniana Nakai (C. choseniana) as complementary herbal medicine to ameliorate androgenic alopecia (AGA). The effects of C. choseniana on AGA were evaluated using testosterone propionate-induced AGA mouse model and dihydrotestosterone-treated human hair follicle dermal papilla cells. In vivo, C. choseniana treatment deactivated androgen signaling by reducing the concentration of serum dihydrotestosterone level and expressions of 5α-reductase 2 and androgen receptor. Next, C. choseniana treatment increased the hair regrowth rate. Histological studies demonstrated that C. choseniana induced the anagen phase in testosterone propionate-induced AGA mouse model. Cellular proliferation was promoted by C. choseniana treatment via increasing the expression of proliferation factors, such as proliferating cell nuclear antigen and cyclin D1. Furthermore, C. choseniana treatment increased the expression of proteins related to the Wnt/β-catenin signaling pathway. In addition, dickkopf-1, a Wnt inhibitor, was downregulated with C. choseniana treatment. Likewise, C. choseniana treatment promoted cellular proliferation in vitro. This study demonstrated the inhibitory effect of C. choseniana on androgen-induced AGA. Moreover, C. choseniana induced activation of Wnt/β-catenin signaling, resulting in prolonged anagen and cellular proliferation. Therefore, we suggest that C. choseniana can be used as a therapeutic agent to alleviate AGA.

Effect of ciglitazone on adipogenic transdifferentiation of bovine skeletal muscle satellite cells

  • Zhang, Junfang;Li, Qiang;Yan, Yan;Sun, Bin;Wang, Ying;Tang, Lin;Wang, Enze;Yu Jia;Nogoy, Kim Margarette Corpuz;Li, Xiangzi;Choi, Seong-Ho
    • Journal of Animal Science and Technology
    • /
    • 제63권4호
    • /
    • pp.934-953
    • /
    • 2021
  • Ciglitazone is a member of the thiazolidinedione family, and specifically binds to peroxisome proliferator-activated receptor-γ (PPARγ), thereby promoting adipocyte differentiation. We hypothesized that ciglitazone as a PPARγ ligand in the absence of an adipocyte differentiation cocktail would increase adiponectin and adipogenic gene expression in bovine satellite cells (BSC). Muscle-derived BSCs were isolated from six, 18-month-old Yanbian Yellow Cattle. The BSC were cultured for 96 h in differentiation medium containing 5 µM ciglitazone (CL), 10 µM ciglitazone (CM), or 20 µM ciglitazone (CH). Control (CON) BSC were cultured only in a differentiation medium (containing 2% horse serum). The presence of myogenin, desmin, and paired box 7 (Pax7) proteins was confirmed in the BSC by immunofluorescence staining. The CL, CM, and CH treatments produced higher concentrations of triacylglycerol and lipid droplet accumulation in myotubes than those of the CON treatment. Ciglitazone treatments significantly increased the relative expression of PPARγ, CCAAT/enhancer-binding protein alpha (C/EBPα), C/EBPβ, fatty acid synthase, stearoyl-CoA desaturase, and perilipin 2. Ciglitazone treatments increased gene expression of Pax3 and Pax7 and decreased expression of myogenic differentiation-1, myogenin, myogenic regulatory factor-5, and myogenin-4 (p < 0.01). Adiponectin concentration caused by ciglitazone treatments was significantly greater than CON (p < 0.01). RNA sequencing showed that 281 differentially expressed genes (DEGs) were found in the treatments of ciglitazone. DEGs gene ontology (GO) analysis showed that the top 10 GO enrichment significantly changed the biological processes such as protein trimerization, negative regulation of cell proliferation, adipocytes differentiation, and cellular response to external stimulus. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that DEGs were involved in the p53 signaling pathway, PPAR signaling pathway, biosynthesis of amino acids, tumor necrosis factor signaling pathway, non-alcoholic fatty liver disease, PI3K-Akt signaling pathway, and Wnt signaling pathway. These results indicate that ciglitazone acts as PPARγ agonist, effectively increases the adiponectin concentration and adipogenic gene expression, and stimulates the conversion of BSC to adipocyte-like cells in the absence of adipocyte differentiation cocktail.

Analysis of Dual Phosphorylation of Hog1 MAP Kinase in Saccharomyces cerevisiae Using Quantitative Mass Spectrometry

  • Choi, Min-Yeon;Kang, Gum-Yong;Hur, Jae-Young;Jung, Jin Woo;Kim, Kwang Pyo;Park, Sang-Hyun
    • Molecules and Cells
    • /
    • 제26권2호
    • /
    • pp.200-205
    • /
    • 2008
  • The mitogen-activated protein kinase (MAPK) signaling pathway is activated in response to extracellular stimuli and regulates various activities in eukaryotic cells. Following exposure to stimuli, MAPK is known to be activated via dual phosphorylation at a conserved TxY motif in the activation loop; both threonine and tyrosine residues are phosphorylated by an upstream kinase. However, the mechanism underlying dual phosphorylation is not clearly understood. In the budding yeast Saccharomyces cerevisiae, the Hog1 MAPK mediates the high-osmolarity glycerol (HOG) signaling pathway. Tandem mass spectrometry and phosphospecific immunoblotting were performed to quantitatively monitor the dynamic changes occurring in the phosphorylation status of the TxY motif of Hog1 on exposure to osmotic stress. The results of our study suggest that the tyrosine residue is preferentially and dynamically phosphorylated following stimulation, and this in turn leads to the dual phosphorylation. The tyrosine residue was hyperphosphorylated in the absence of a threonine residue; this result suggests that the threonine residue is critical for the control of signaling noise and adaptation to osmotic stress.

Abnormal Astrocytosis in the Basal Ganglia Pathway of Git1-/- Mice

  • Lim, Soo-Yeon;Mah, Won
    • Molecules and Cells
    • /
    • 제38권6호
    • /
    • pp.540-547
    • /
    • 2015
  • Attention deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders, affecting approximately 5% of children. However, the neural mechanisms underlying its development and treatment are yet to be elucidated. In this study, we report that an ADHD mouse model, which harbors a deletion in the Git1 locus, exhibits severe astrocytosis in the globus pallidus (GP) and thalamic reticular nucleus (TRN), which send modulatory GABAergic inputs to the thalamus. A moderate level of astrocytosis was displayed in other regions of the basal ganglia pathway, including the ventrobasal thalamus and cortex, but not in other brain regions, such as the caudate putamen, basolateral amygdala, and hippocampal CA1. This basal ganglia circuit-selective astrocytosis was detected in both in adult (2-3 months old) and juvenile (4 weeks old) $Git1^{\check{s}/\check{s}}$ mice, suggesting a developmental origin. Astrocytes play an active role in the developing synaptic circuit; therefore, we performed an immunohistochemical analysis of synaptic markers. We detected increased and decreased levels of GABA and parvalbumin (PV), respectively, in the GP. This suggests that astrocytosis may alter synaptic transmission in the basal ganglia. Intriguingly, increased GABA expression colocalized with the astrocyte marker, GFAP, indicative of an astrocytic origin. Collectively, these results suggest that defects in basal ganglia circuitry, leading to impaired inhibitory modulation of the thalamus, are neural correlates for the ADHD-associated behavioral manifestations in $Git1^{\check{s}/\check{s}}$ mice.

Thermodynamic Analyses of the Constitutive Splicing Pathway for Ovomucoid Pre-mRNA

  • Ro-Choi, Tae Suk;Choi, Yong Chun
    • Molecules and Cells
    • /
    • 제27권6호
    • /
    • pp.657-665
    • /
    • 2009
  • The ovomucoid pre-mRNA has been folded into mini-hairpins adaptable for the RNA recognition motif (RRM) protein binding. The number of mini-hairpins were 372 for pre-mRNA and 83-86 for mature mRNA. The spatial arrangements are, in average, 16 nucleotides per mini-hairpin which includes 7 nt in the stem, 5.6 nt in the loop and 3.7 nt in the inter-hairpin spacer. The constitutive splicing system of ovomucoid-pre-mRNA is characterized by preferred order of intron removal of 5/6 > 7/4 > 2/1 > 3. The 5' splice sites (5'SS), branch point sequences (BPS) and 3' splice sites (3'SS) were identified and free energies involved have been estimated in 7 splice sites. Thermodynamic barriers for splice sites from the least (|lowest| -Kcal) were 5, 4, 7, 6, 2, 1, and 3; i.e., -18.7 Kcal, -20.2 Kcal, -21.0 Kcal, -24.0 Kcal, - 25.4 Kcal, -26.4 Kcal and -28.2 Kcal respectively. These are parallel to the kinetic data of splicing order reported in the literature. As a result, the preferred order of intron removals can be described by a consideration of free energy changes involved in the spliceosomal assembly pathway. This finding is consistent with the validity of hnRNP formation mechanisms in previous reports.

CopA3 peptide from Copris tripartitus induces apoptosis in human leukemia cells via a caspase-independent pathway

  • Kang, Bo-Ram;Kim, Ho;Nam, Sung-Hee;Yun, Eun-Young;Kim, Seong-Ryul;Ahn, Mi-Young;Chang, Jong-Soo;Hwang, Jae-Sam
    • BMB Reports
    • /
    • 제45권2호
    • /
    • pp.85-90
    • /
    • 2012
  • Our previous study demonstrated that CopA3, a disulfide dimer of the coprisin peptide analogue (LLCIALRKK), has antibacterial activity. In this study, we assessed whether CopA3 caused cellular toxicity in various mammalian cell lines. CopA3 selectively caused a marked decrease in cell viability in Jurkat T, U937, and AML-2 cells (human leukemia cells), but was not cytotoxic to Caki or Hela cells. Fragmentation of DNA, a marker of apoptosis, was also confirmed in the leukemia cell lines, but not in the other cells. CopA3-induced apoptosis in leukemia cells was mediated by apoptosis inducing factor (AIF), indicating induction of a caspase-independent signaling pathway.

A GSK-3/SHAGGY-Related Protein Kinase is Involved in Phytochrome Signal Transduction Pathway

  • Kwak, Su-Nam;Kong, Sam-Geun;Hahn, Tae-Ryong;Kim, In-Soo
    • Journal of Photoscience
    • /
    • 제7권3호
    • /
    • pp.123-128
    • /
    • 2000
  • Phosphorylation of cellular proteins is a key regulatory mehanism for signal transduction pathway in living cells. Phytochrome, a red/far-red light photoreceptor in plants, is known to employ protein phosphorylation for its light signaling, although its detauked mechanism is still ambiguous. This study is intended to identify the phosphoproteins and protein kinases that are regulated by phytochrome, by employing transgenic rice seedlings that overexpress Arabidopsis phytochrome A. Red light stimulated phsophorylation of a 70 kDa protein and far-red light negated the effect. The red light induced phosphotylation of the 70 kDa protein was strongly activated by heparin and inhibited by poly-L-lysine, suggesting that the 70 kDa protein phosphorylating kinase belongs to GSK-3/SHAGGY protein kinase that has functional roles in establishing cell fate and pattern formation in Drosophila. Taken together with the fact that phytochrome controls plant development, these results may suggest that a GSK-3/SHAGGY-related protein kinase in plant(ASK) is likely to be involved in phytochrome signal transduction.

  • PDF