• Title/Summary/Keyword: Cellular organelles

Search Result 117, Processing Time 0.025 seconds

Ultrastructure of the Ventral Nephrocytes in the Larva of Lucilia illustris Meigen (연두금파리 종령유충의 복신세포의 미세구조)

  • Cho, Jeong-Sook;Kim, Kwan-Seon;Kim, Woo-Kap
    • Applied Microscopy
    • /
    • v.21 no.2
    • /
    • pp.29-38
    • /
    • 1991
  • Ventral nephrocytes in the larva of the Lucilia illustris comprise ellipsoid cells situated onto the salivary glands. The cells are $60{\sim}100{\mu}m$ in diameter. Junctional complex beneath the basement membrane hold the plasma membrane in a even contour. Intracellular channels from the juntion complex are well developed at the cortex part of the cell. Coated vesicles pinched off from the channels seems to be connected with the ${\alpha}$-vacuoles via the tubular elements, which is regared as selective absorption system from the hemolymph. Two nuclei are sometimes observed in the medulla part of the cell. Ventral nephrocytes contain well-developed rough endoplasmic reticulum and Golgi complex, and numerous mitochondria. These cellular organelles synthesize lysosome. The lysosome not only digest some cell organells but also seems to be related with the ${\beta}$-vacuoles.

  • PDF

Workflow of Cryo-Electron Microscopy and Status of Domestic Infrastructure

  • Choi, Ki Ju;Shin, Jae In;Lee, Sung Hun
    • Applied Microscopy
    • /
    • v.48 no.1
    • /
    • pp.6-10
    • /
    • 2018
  • Cryo-electron microscopy (cryo-EM) allows the analysis of the near-native structures of samples such as proteins, viruses, and sub-cellular organelles at the sub-nano scale. With the recent development of analytical methods, this technique has achieved remarkable results. The importance of cryo-EM gained wide recognition due to last year's award of the Nobel Prize in Chemistry. To help promote the knowledge of this technique, this paper introduces the basic workflows of cryo-EM and domestic cryo-EM service institutes.

Immunocytolocalization of Cell Wall Peroxidase and Other Wall Antigens from Maize Seedlings

  • Kim, Sung-Ha
    • Journal of Plant Biology
    • /
    • v.39 no.2
    • /
    • pp.99-105
    • /
    • 1996
  • Immunocytochemistry utilizes the specificity of the antigen-antibody reaction to localize specific antigens in cells or cellular organelles. Here we report the use of monoclonal antibodies, in conjunction with gold-labeled second antibodies to study the ultrastructural localization and tissue distribution of the Mr 98, 000 anionic peroxidase and other wall antigens. The antibody specific for this wall peroxidase, mWP3, labeled mainly the cell wall area. At the tissue level, the Mr 98, 000 peroxidase is located predominantly in the leaf mesophyll, internal coleoptile and sieve elements, but not in the root, as assayed with these procedures. The coleoptile walls were less heavily stained than the walls of leaf mesophyll cells. At the subcellular level, it is localized mainly in intercellular regions of the cell walls. A similar staining pattern was revealed by mWP19, one of anti-$\beta$ glucosidase antibody, though it looked less heavily stained than one with mWP3. In order to serve as a control wall staining using IgM monoclonal antibodies, mWP18 was used. Most of the label is localized over wall regions of cells of the young leaf mesophyll and coleoptile.

  • PDF

Cytological Modification of Sorghum Leaf Tissues Showing the Early Acute Response to Maize Dwrf Mosaic Virus

  • Choi, Chang-Won
    • Journal of Plant Biology
    • /
    • v.39 no.3
    • /
    • pp.215-221
    • /
    • 1996
  • Sorghum leaf tissues showing the early acute response of systemic infection with maize dwarf mosaic virus (MDMV) strain A, contained unusual virus-induced cytological modifications including cell wall thickenings and protrusions, intercellular vesicles termed as "paramural bodies", modified plasmodesmata, abnormal plastids, and cylindrical inclusion bodies. Abnormal cell wall, some of which associated with paramural bodies, was frequently contained modified plasmodesmata. Various abnormal plastids were located within infected cells of leaf tissues showing the early acute response. The most important changes in chloroplast seen in the tissues are the presence of small vesicles, deformation of membranes, reduction in granal stack height, disappearance of osmiophilic globules and degeneration of stuctures. The cytological modification was not occurred in nucleus but a group of degenerated mitochondria with abnormal membranes attached to cylindrical inclusion bodies were observed. It was hard more or less to prove the relationship clearly between virus and cellular organelles in virus replication.plication.

  • PDF

Changes of Cytosolic $Ca^{2+}$ by IAA and Zeatin in Protoplasts Isolated from Maize Mesocotyl (옥수수 중배축으로부터 분리한 원형질체에서 IAA와 Aeatin에 의한 세포질 $Ca^{2+}$ 노도의 변화)

  • 송재진
    • Journal of Plant Biology
    • /
    • v.34 no.3
    • /
    • pp.239-244
    • /
    • 1991
  • Ca2+ is implicated as a second messenger in coupling various stimuli such as hormone, gravity and light. The determine whether or not plant hormones mobilize calcium with different action, we investigated the cytosolic Ca2+ changes by IAA and zeatin in the protoplasts isolated from elongating mesocotyl of maize. IAA increased the influx of Ca2+ due to the calcium channel opening, which was confirmed by using verapamil, calcium channel blocker. On the other hand, zeatin increased the cytosolic Ca2+ by promoting the efflux of Ca2+ derived from cellular organelles. These results suggest that different calcium flux induced by IAA and zeatin plays a role in appropriate response resulting in increase of cell elongation or repression cell elongatoin.

  • PDF

Ultrastructure of Secretory Duct Development in the Stem of Ginseng (Panax ginseng C.A.Meyer) Seedlings (인삼 유식물체 줄기의 분비관 형성에 관한 미세구조)

  • 류성철
    • Journal of Plant Biology
    • /
    • v.32 no.3
    • /
    • pp.151-162
    • /
    • 1989
  • Secretory ducts in the stem of Panax ginseng seedlings are observed with light and electron microscopes to clarify development of the epithelial cells of secretory ducts. Secretory duct initial cell is developed from procambial cell which originated from initial cell is differentiated into ipithelial cell ofsecretory ducts. Intercellular space between the epithelial cells are gradually expanded and differentiated into duct lumen. Disintegrations of epithelial cells occur throughout all the stages of development. The cytoplasm of epithelial cells darken and the epithelial cell wall are lysed, preceding their disintegraton. In the epithelial cell organelles are scattered in the cytoplasm. Development of vcuoles are sparse at the early stage. Starch grains decreased gradually, while lipid droplets increased. Free ribosomes are distributed throughout the cytoplasm and secretory vesicles which originated from rough endoplasmic reticulum and Golgi complex are fused with the plasmalemma. These suggest that the cellular metabolism is active. Microtubules and plasmodesmata are typically observed in the thickened epithelial cell wall. Secretions are accumulated in duct lumen.

  • PDF

Autophagy in neurodegeneration: two sides of the same coin

  • Lee, Jin-A
    • BMB Reports
    • /
    • v.42 no.6
    • /
    • pp.324-330
    • /
    • 2009
  • Autophagy is a bulk lysosomal degradation process important in development, differentiation and cellular homeostasis in multiple organs. Interestingly, neuronal survival is highly dependent on autophagy due to its post-mitotic nature, polarized morphology and active protein trafficking. A growing body of evidence now suggests that alteration or dysfunction of autophagy causes accumulation of abnormal proteins and/or damaged organelles, thereby leading to neurodegenerative disease. Although autophagy generally prevents neuronal cell death, it plays a protective or detrimental role in neurodegenerative disease depending on the environment. In this review, the two sides of autophagy will be discussed in the context of several neurodegenerative diseases.

Mitochondria-mediated defense mechanisms against pathogens in Caenorhabditis elegans

  • Kwon, Sujeong;Kim, Eun Ji E.;Lee, Seung-Jae V.
    • BMB Reports
    • /
    • v.51 no.6
    • /
    • pp.274-279
    • /
    • 2018
  • Mitochondria are crucial organelles that generate cellular energy and metabolites. Recent studies indicate that mitochondria also regulate immunity. In this review, we discuss key roles of mitochondria in immunity against pathogen infection and underlying mechanisms, focusing on discoveries using Caenorhabditis elegans. Various mitochondrial processes, including mitochondrial surveillance mechanisms, mitochondrial unfolded protein response ($UPR^{mt}$), mitophagy, and reactive oxygen species (ROS) production, contribute to immune responses and resistance of C. elegans against pathogens. Biological processes of C. elegans are usually conserved across phyla. Thus, understanding the mechanisms of mitochondria-mediated defense responses in C. elegans may provide insights into similar mechanisms in complex organisms, including mammals.

Autophagy Dysregulation and Obesity-Associated Pathologies

  • Sim, Namkoong;Cho, Chun-Seok;Semple, Ian;Lee, Jun Hee
    • Molecules and Cells
    • /
    • v.41 no.1
    • /
    • pp.3-10
    • /
    • 2018
  • Autophagy is one of the major degradative mechanisms that can eliminate excessive nutrients, toxic protein aggregates, damaged organelles and invading microorganisms. In response to obesity and obesity-associated lipotoxic, proteotoxic and oxidative stresses, autophagy plays an essential role in maintaining physiological homeostasis. However, obesity and its associated stress insults can often interfere with the autophagic process through various mechanisms, which result in further aggravation of obesity-related metabolic pathologies in multiple metabolic organs. Paradoxically, inhibition of autophagy, within specific contexts, indirectly produces beneficial effects that can alleviate several detrimental consequences of obesity. In this minireview, we will provide a brief discussion about our current understanding of the impact of obesity on autophagy and the role of autophagy dysregulation in modulating obesity-associated pathological outcomes.

Evolution and Design Principles of the Diverse Chloroplast Transit Peptides

  • Lee, Dong Wook;Hwang, Inhwan
    • Molecules and Cells
    • /
    • v.41 no.3
    • /
    • pp.161-167
    • /
    • 2018
  • Chloroplasts are present in organisms belonging to the kingdom Plantae. These organelles are thought to have originated from photosynthetic cyanobacteria through endosymbiosis. During endosymbiosis, most cyanobacterial genes were transferred to the host nucleus. Therefore, most chloroplast proteins became encoded in the nuclear genome and must return to the chloroplast after translation. The N-terminal cleavable transit peptide (TP) is necessary and sufficient for the import of nucleus-encoded interior chloroplast proteins. Over the past decade, extensive research on the TP has revealed many important characteristic features of TPs. These studies have also shed light on the question of how the many diverse TPs could have evolved to target specific proteins to the chloroplast. In this review, we summarize the characteristic features of TPs. We also highlight recent advances in our understanding of TP evolution and provide future perspectives about this important research area.