• Title/Summary/Keyword: Cellular membrane

Search Result 749, Processing Time 0.026 seconds

Relationship between Endotoxin Level of in Swine Farm Dust and Cellular Immunity of Husbandry Workers (돈사 분진 함유 내독소 수준과 축사 작업자들의 세포면역력간 상관성 분석)

  • Kim, Hyoung Ah;Kim, Ji Youn;Shin, Kyeong Min;Jo, Ji Hoon;Roque, Katharine;Jo, Gwang Ho;Heo, Yong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.4
    • /
    • pp.393-401
    • /
    • 2013
  • Objectives: Endotoxins in dust generated in occupational settings is known to contribute to the occurrence of respiratory illness among workers. The relationship between the level of endotoxins in total dust or respirable particulates collected from swine farms and immunological markers related with respiratory allergy was evaluated among swine husbandry workers. Materials and Methods: Peripheral blood samples were collected from ten workers at ten swine farms at Gyeonggi province, Korea. Peripheral mononuclear cells were stimulated with phorbol 12-myristate 13-acetate and ionomycin for 48 hours. The levels of various cytokines produced at culture supernatants were determined using a commercially available ELISA kit. The concentration of particulate matter($PM_{10}$) in the indoor air of the swine farms was evaluated using a PVC membrane filter and mini volume air sampler, and endotoxin levels in the dust were measured by Limulus Amebocyte Lysate Kinetic QCL method. Results: Levels of endotoxins in the total dust were categorized into high(geometric mean: $109.35EU/m^3$) and low concentrations (geometric mean: $0.95EU/m^3$) for five swine farms. Interleukin-4 levels were higher in the high endotoxin group than in the low endotoxin group, while interferon-${\gamma}$ levels were lower in the high endotoxin group than in the low endotoxin group. The ratio (interferon-${\gamma}$ to interleukin-4), indicating immunologic skewedness against allergic reactivities, was lower in the high endotoxin group($1.15{\pm}0.60$) than the low endotoxin group($3.09{\pm}2.38$). In addition, the level of interleukin-13, another cytokine contributing to the occurrence of allergic responses, was significantly higher in the at the high endotoxin group($1.12{\pm}0.37ng/m{\ell}$) than in the low endotoxin group($0.37{\pm}0.04ng/m{\ell}$). Hematologic assessment showed significantly lower cellularity in the number of total leukocytes, neutrophils, and eosinophils in the high endotoxin group than in the low endotoxin group. Conclusions: Even though a sufficient number of swine workers and farms were not investigated, this study generlly suggests that the immunological function of swine farm workers exposed to high levels of endotoxin could be modulated toward allergic reactivities.

Selenoprotein S Suppression Enhances the Late Stage Differentiation of Proerythrocytes Via SIRT1

  • Yang, Hee-Young;Chung, Kyoung-Jin;Park, Hyang-Rim;Han, Seong-Jeong;Lee, Seung-Rock;Chay, Kee-Oh;Kim, Ick-Young;Park, Byung-Ju;Lee, Tae-Hoon
    • International Journal of Oral Biology
    • /
    • v.35 no.2
    • /
    • pp.61-67
    • /
    • 2010
  • Selenoprotein S (SelS) is widely expressed in diverse tissues where it localizes in the plasma membrane and endoplasmic reticulum. We studied the potential function of SelS in erythrocyte differentiation using K562 cells stably over-expressing SelS wild-type (WT) or one of two SelS point mutants, $U_{188}S$ or $U_{188}C$. We found that in the K562 cells treated with $1\;{\mu}M$ Ara-C, SelS gradually declined over five days of treatment. On day 4, intracellular ROS levels were higher in cells expressing SelS-WT than in those expressing a SelS mutant. Moreover, the cell cycle patterns in cells expressing SelS-WT or $U_{188}C$ were similar to the controls. The expression and activation of SIRT1 were also reduced during K562 differentiation. Cells expressing SelS-WT showed elevated SIRT1 expression and activation (phosphorylation), as well as higher levels of FoxO3a expression. SIRT1 activation was diminished slightly in cells expressing SelS-WT after treatment with the ROS scavenger NAC (12 mM), but not in those expressing a SelS mutant. After four days of Ara-C treatment, SelS-WT-expressing cells showed elevated transcription of $\beta$-globin, $\gamma$-globin, $\varepsilon$-globin, GATA-1 and zfpm-1, whereas cells expressing a SelS mutant did not. These results suggest that the suppression of SelS acts as a trigger for proerythrocyte differentiation via the ROS-mediated downregulation of SIRT1.

Characterization of Caveola-Vesicle Complexes (CVCs) Protein, PHIST/CVC-8195 in Plasmodium vivax

  • Wang, Bo;Lu, Feng;Han, Jin-Hee;Lee, Seong-Kyun;Cheng, Yang;Nyunt, Myat Htut;Ha, Kwon-Soo;Hong, Seok-Ho;Park, Won Sun;Han, Eun-Taek
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.6
    • /
    • pp.725-732
    • /
    • 2016
  • Plasmodium vivax produces numerous caveola-vesicle complex (CVC) structures beneath the membrane of infected erythrocytes. Recently, a member helical interspersed subtelomeric (PHIST) superfamily protein, $PcyPHIST/CVC-81_{95}$, was identified as CVCs-associated protein in Plasmodium cynomolgi and essential for survival of this parasite. Very little information has been documented to date about $PHIST/CVC-81_{95}$ protein in P. vivax. In this study, the recombinant $PvPHIST/CVC-81_{95}$ N and C termini were expressed, and immunoreactivity was assessed using confirmed vivax malaria patients sera by protein microarray. The subcellular localization of $PvPHIST/CVC-81_{95}$ N and C termini in blood stage parasites was also determined. The antigenicity of recombinant $PvPHIST/CVC-81_{95}$ N and C terminal proteins were analyzed by using serum samples from the Republic of Korea. The results showed that immunoreactivities to these proteins had 61% and 43% sensitivity and 96.9% and 93.8% specificity, respectively. The N terminal of $PvPHIST/CVC-81_{95}$ which contains transmembrane domain and export motif (PEXEL; RxLxE/Q/D) produced CVCs location throughout the erythrocytic-stage parasites. However, no fluorescence was detected with antibodies against C terminal fragment of $PvPHIST/CVC-81_{95}$. These results suggest that the $PvPHIST/CVC-81_{95}$ is localized on the CVCs and may be immunogenic in natural infection of P. vivax.

Increased Primary Cilia in Idiopathic Pulmonary Fibrosis

  • Lee, Junguee;Oh, Dong Hyun;Park, Ki Cheol;Choi, Ji Eun;Kwon, Jong Beom;Lee, Jongho;Park, Kuhn;Sul, Hae Joung
    • Molecules and Cells
    • /
    • v.41 no.3
    • /
    • pp.224-233
    • /
    • 2018
  • Primary cilia are solitary, non-motile, axonemal microtubule-based antenna-like organelles that project from the plasma membrane of most mammalian cells and are implicated in transducing hedgehog signals during development. It was recently proposed that aberrant SHH signaling may be implicated in the progression of idiopathic pulmonary fibrosis (IPF). However, the distribution and role of primary cilia in IPF remains unclear. Here, we clearly observed the primary cilia in alveolar epithelial cells, fibroblasts, and endothelial cells of human normal lung tissue. Then, we investigated the distribution of primary cilia in human IPF tissue samples using immunofluorescence. Tissues from six IPF cases showed an increase in the number of primary cilia in alveolar cells and fibroblasts. In addition, we observed an increase in ciliogenesis related genes such as IFT20 and IFT88 in IPF. Since major components of the SHH signaling pathway are known to be localized in primary cilia, we quantified the mRNA expression of the SHH signaling components using qRT-PCR in both IPF and control lung. mRNA levels of SHH, the coreceptor SMO, and the transcription factors GLI1 and GLI2 were upregulated in IPF compared with control. Furthermore, the nuclear localization of GLI1 was observed mainly in alveolar epithelia and fibroblasts. In addition, we showed that defective KIF3A-mediated ciliary loss in human type II alveolar epithelial cell lines leads to disruption of SHH signaling. These results indicate that a significant increase in the number of primary cilia in IPF contributes to the upregulation of SHH signals.

Common Docking Domain Mutation E322K of the ERK2 Gene is Infrequent in Oral Squamous Cell Carcinomas

  • Valiathan, Gopalakrishnan Mohan;Thenumgal, Siji Jacob;Jayaraman, Bhaskar;Palaniyandi, Arunmozhi;Ramkumar, Hemalatha;Jayakumar, Keerthivasan;Bhaskaran, Sajeev;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6155-6157
    • /
    • 2012
  • Background: Mutations in the MAPK (Mitogen Activated Protein Kinase) signaling pathway - EGFR/Ras/RAF/MEK have been associated with the development of several carcinomas. ERK2, a downstream target of the MAPK pathway and a founding member of the MAPK family is activated by cellular signals emanating at the cell membrane. Activated ERK2 translocates into the nucleus to transactivate genes that promote cell proliferation. MKP - a dual specific phosphatase - interacts with activated ERK2 via the common docking (CD) domain of the later to inactivate (dephosphorylate) and effectively terminate further cell proliferation. A constitutively active form of ERK2 carrying a single point mutation - E322K in its CD domain, was earlier reported by our laboratory. In the present study, we investigated the prevalence of this CD domain E322K mutation in 88 well differentiated OSCC tissue samples. Materials and Method: Genomic DNA specimens isolated from 88 oral squamous cell carcinoma tissue samples were amplified with primers flanking the CD domain of the ERK2 gene. Subsequently, PCR amplicons were gel purified and subjected to direct sequencing to screen for mutations. Results: Direct sequencing of eighty eight OSCC samples identified an E322K CD domain mutation in only one (1.1%) OSCC sample. Conclusions: Our result indicates that mutation in the CD domain of ERK2 is rare in OSCC patients, which suggests the role of genetic alterations in other mitogenic genes in the development of carcinoma in the rest of the patients. Nevertheless, the finding is clinically significant, as the relatively rare prevalence of the E322K mutation in OSCC suggests that ERK2, being a common end point signal in the multi-hierarchical mitogen activated signaling pathway may be explored as a viable drug target in the treatment of OSCC.

Foliar ultrastructure of Korean Orostachys species (한국산(韓國産) 바위솔속(屬) 엽육조직(葉肉組織)의 미세구조(微細構造))

  • Kim, In-Sun;Pak, Jae-Hong;Seo, Bong-Bo;Song, Seung-Dal
    • Applied Microscopy
    • /
    • v.25 no.4
    • /
    • pp.52-61
    • /
    • 1995
  • Ultrastructural characteristics were examined with leaves of three species, O. japonicus A. Berger, O. malacophyllus Fisch., and O. sikokianus Owhi that probably have CAM mode. The mesophyll cells of these Orostachys possessed vacuoles with precipitates, myelin-like figures, and plasmalemmasomes, along with typical chloroplasts, microbodies and darkly stained bodies in their thin peripheral cytoplasm. Separation of the plasmalemma from the cell wall, leaving a space between them, was a common phenomenon in these species. A complex array of small to large vacuoles which contain small, membrane-bounded vesicles or vacuole-like structures were frequently found. A well-developed thylakoid system was observed in the chloroplasts and this indicates that the photosynthetic capacity of these mesophyll cells is probably active. A peculiar configuration of cytoplasm, especially around the chloroplasts, was also encountered. The variety of cytoplasmic constituents and vacuoles suggest the water-storing mesophyll cells may be complex in function. Some cellular features detected in this study strongly suggest the possible occurrence of CAM mode in Orostachys species.

  • PDF

Studies on Platelet Activation of Saikosaponin Isolated From Bupleuri Radix (시호 Saponin의 혈소판 활성화 작용에 관한 연구)

  • 박영현;송민주;김남수
    • Journal of Food Hygiene and Safety
    • /
    • v.13 no.4
    • /
    • pp.355-359
    • /
    • 1998
  • Platelet activation is originated by the intracellular or/and extracellular $Ca^{2+}$. Agonist-induced $Ca^{2+}$ entry through a plasma-membrane pathway has been reported repeatedly, but the mechanisms has proven harder to elucidate. Recently, a number of natural products have been isolated from medicinal plants and marine organisms and have proved to be useful chemical tools for resolving the mechanism of cellular functions. In an attempt to understand the mechanism of platelet activation in Bupleuri Radix, we have studied some aspects of the isolation of active components and their dependence of external $Ca^{2+}$> on platelet activation. Acetone extract of Bupleuri Radix has the most activity on platelet activation and it's active components were identified as saikosaponin a and d. Their optimal concentration was respectively $20\;\mu\textrm{g}/ml$ and $5\;\mu\textrm{g}/ml$ and their platelet activation was not dependent on external $Ca^{2+}$>, whereas optimal concentration of each agonist was arachidonic acid ($10\;\mu\textrm{M}$), collagen ($10\;\mu\textrm{M}/ml$), thrombin (0.1 unit/mi), PAF (5 nM), PMA ($5\;\mu\textrm{M}$), ionophore A23187 ($2\;\mu\textrm{g}$) and their dependence of external $Ca^{2+}$> on platelet activation appeared to thrombin > collagen $\geq$ PAF > PMA > arachdonic acid> ionophore A23187. These results suggest that saikosaponin is different from each agonists in the dependence of external $Ca^{2+}$ on platelet activation.

  • PDF

Mechanism of $Ca^{2+}$ Regulation in Osteoblast-like Cells (골아세포내 $Ca^{2+}$ 활성도의 조절기전)

  • Park, Mi-Jung
    • Journal of Korean Biological Nursing Science
    • /
    • v.1 no.1
    • /
    • pp.25-41
    • /
    • 1999
  • Physiological activity of osteoblast including bone formation is known to be closely related to the increase of intracellular $Ca^{2+}$ activity($[Ca^{2+}]_i$) in osteoblast. $Ca^{2+}$ is an important intracellular messenger in diverse cellular functions, and regulation of its level is mediated by the transmembrane $Ca^{2+}$ movement via $Ca^{2+}$ channels, $Na^+-Ca^{2+}$ exchange, and by intracellular $Ca^{2+}$ movement through the intracellular stores. The purpose of this study is to investigate how the intracellular $Ca^{2+}$ is regulated in osteoblast-like cells(OLCs) by measuring $Ca^{2+}$ activity with cell imaging technique. OLCs were isolated from femur and tibia of neonatal rats, and cultured for 7 days. Cultured OLCs were loaded with a $Ca^{2+}$-sensitive fluorescent dye, Fura-2, and fluorescence images were monitored with a cooled CCD camera. The images were processed and analyzed with an image analyzing software. The results were as follows. (1) $[Ca^{2+}]_i$ of OLC decreased as the $Ca^{2+}$ concentration in the superfusing Tyrode solution was lowered. When $Na^+$ concentration in the superfusing solution was decreased, $[Ca^{2+}]_i$ increased.. These suggest that $Ca^{2+}$ flux occurs via the $Na^+-Ca^{2+}$ exchange mechanism. (2) When $Na^+$ in the superfusing solution was removed. a transient $Ca^{2+}$, increase($Ca^{2+}$ spike) was occasionally observed. However, $Ca^{2+}$ spike was not observed after adding 1 ${\mu}M$ thapsigargin. This implies that the generation of $Ca^{2+}$ spike is mediated by the release of $Ca^{2+}$ from endoplasmic reticulum(ER). (3) As the $Ca^{2+}$ concentration in the superfusing solution was raised, the frequency of 0mM $Na^+$-induced $Ca^{2+}$ spike increased, suggesting that $Ca^{2+}$-induced $Ca^{2+}$ release(CICR) mechanism exists. (4) After $[Ca^{2+}]_i$ was decreased with the superfusion of $Ca^{2+}$-free solution containing thapsigargin, the recovery of $[Ca^{2+}]_i$ with reperfusion of 2.5mM $Ca^{2+}$ solution transiently exceeded the control level, suggesting that the depletion of $Ca^{2+}$ in ER induces $Ca^{2+}$ influx from extracellular medium via store-operated $Ca^{2+}$ influx(SOCI) mechanism. (5) $[Ca^{2+}]_i$ was not affected by the superfusion of 25mM $K^+$ Tyrode solution. These results suggest that intracellular $Ca^{2+}$ activity in osteoblast is regulated by transmembrane $Ca^{2+}$ flux via $Na^+-Ca^{2+}$ exchange, $Ca^{2+}$ release from the internal store (ER) via $Ca^{2+}$-induced $Ca^{2+}$ release, and store-operated $Ca^{2+}$ influx across the cell membrane.

  • PDF

Anti-metastatic Effects on B16F10 Melanoma Cells of Extracts and Two Prenylated Xanthones Isolated from Maclura amboinensis Bl. Roots

  • Siripong, Pongpun;Rassamee, Kitiya;Piyaviriyakul, Suratsawadee;Yahuafai, Jantana;Kanokmedhakul, Kwanjai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3519-3528
    • /
    • 2012
  • Inhibitory effects of Maclura amboinenesis Bl, one plant used traditionally for the treatment of cancers, on metastatic potential of highly metastatic B16F10 melanoma cells were investigated in vitro. Cell proliferation was assessed using the MTT colorimetric assay. Details of metastatic capabilities including invasion, migration and adhesion of B16F10 melanoma cells were examined by Boyden Chamber invasion and migration, scratch motility and cell attachment assays, respectively. The results demonstrated that n-hexane and chloroform extracts exhibited potent anti-proliferative effects (p<0.01), whereas the methanol and aqueous extracts had less pronounced effects after 24 h exposure. Bioactivity-guided chromatographic fractionation of both active n-hexane and chloroform extracts led to the isolation of two main prenylated xanthones and characterization as macluraxanthone and gerontoxanthone-I, respectively, their structures being identified by comparison with the spectral data. Interestingly, both exhibited potent effective effects. At non-toxic effective doses, n-hexane and chloroform extracts (10 and $30{\mu}g/ml$) as well as macluraxanthone and gerontoxanthone-I (3 and $10{\mu}M$) significantly inhibited B16F10 cell invasion, to a greater extent than $10{\mu}m$ doxorubicin, while reducing migration of cancer cells without cellular cytotoxicity. Moreover, exposure of B16F10 melanoma cells to high concentrations of chloroform ($30{\mu}g/ml$) and geratoxanthone-I ($20{\mu}M$) for 24 h resulted in delayed adhesion and retarded colonization. As insights into mechanisms of action, typical morphological changes of apoptotic cells e.g. membrane blebbing, chromatin condensation, nuclear fragmentation, apoptotic bodies and loss of adhesion as well as cell cycle arrest in the G1 phase with increase of sub-G1 cell proportions, detected by Hoechst 33342 staining and flow cytometry were observed, suggesting DNA damage and subsequent apoptotic cell death. Taken together, our findings indicate for the first time that active n-hexane and chloroform extracts as well as macluraxanthone and gerontoxanthone-I isolated from Maclura amboinensis Bl. roots affect multistep of cancer metastasis processes including proliferation, adhesion, invasion and migration, possibly through induction of apoptosis of highly metastatic B16F10 melanoma cells. Based on these data, M. amboinensis Bl. represents a potential candidate novel chemopreventive and/or chemotherapeutic agent. Additionally, they also support its ethno-medicinal usage for cancer prevention and/or chemotherapy.

Inhibition of PI3K/AKT Signaling Pathway Enhances Cordycepin-Induced Apoptosis in Human Gastric Cancer Cells (인체위암 세포에서 PI3K/AKT 신호 전달계 차단에 의한 동충하초 유래 Cordycepin의 Apoptosis 유발 효과 증진)

  • Lee, Hye Hyeon;Jeong, Jin-Woo;Choi, Yung Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.6
    • /
    • pp.835-842
    • /
    • 2016
  • The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway plays a crucial role in cancer occurrence by promoting cell proliferation and inhibiting apoptosis. In the present study, we evaluated the effect of a PI3K inhibitor, LY294002, on the chemosensitivity of gastric cancer cells to cordycepin, a predominant functional component of the fungus Cordyceps militaris, in AGS human gastric cancer cells and investigated possible underlying cellular mechanisms. Our results revealed that cordycepin inhibited viability of AGS cells in a concentration-dependent manner and induced apoptosis, as determined by apoptotic cell morphologies and fluorescence-activated cell sorting analysis associated with attenuated activation of the PI3K/Akt signaling pathway. Treatment with cordycepin in combination with a subtoxic concentration of LY294002 enhanced cordycepin-induced cytotoxicity and apoptotic potentials in AGS cells. Sensitization of LY294002 to cordycepin-induced apoptosis was accompanied by activation of caspases (caspases-3, -8, and -9) and was concomitant with poly(ADP-ribose) polymerase cleavage. Moreover, LY294002 up-regulated pro-apoptotic Bax and enhanced truncation of Bid in cordycepin-treated AGS cells, which was connected with increased loss of mitochondrial membrane potential and release of cytochrome c from mitochondria to the cytosol. Taken together, these results indicate that inhibition of the PI3K/Akt signaling pathway could augment cordycepin-induced apoptosis in human gastric cancer cells by up-regulating caspase activity through mitochondrial dysfunction.